XCG CONSULTING LIMITED

T 613 542 5888 F 613 542 0844 | kingston@xcg.com

4 Cataraqui Street, Woolen Mill, East Wing, Suite 100, Kingston, Ontario, Canada K7K 1Z7

XCG File No.: 1-898-25-03

January 17, 2020

PHASE II ENVIRONMENTAL SITE ASSESSMENT

40 SIR JOHN A. MACDONALD BOULEVARD KINGSTON, ONTARIO

Prepared for:

SIDERIUS DEVELOPMENTS LTD. 588 Scotland Road

Odessa, Ontario K0H 2H0

Attention: Mr. Nate Doornekamp

Kamin Paul, B.A.Sc., EIT Project Specialist

Kevin Shipley, M.A.Sc., P.Eng., EP(CEA), EP, QP_{RA}

Partner

ES 1. EXECUTIVE SUMMARY

XCG Consulting Limited (XCG) was retained by Siderius Developments Ltd. to conduct a Phase II Environmental Site Assessment (ESA) of the property at 40 Sir John A. MacDonald Boulevard, in Kingston, Ontario (subject property or site).

The subject site consists of one irregular shaped building comprising a total footprint of approximately 1,918 square metres (20,645 square feet) located on a 3.28-hectare (8.11-acre) parcel of land on the south side of Union Street and west of Sir John A. MacDonald Boulevard in Kingston, Ontario.

The scope of this environmental investigation was based on the findings of a Phase I ESA completed by XCG. The findings of the Phase I ESA were documented in a report prepared by XCG titled "Phase I Environmental Site Assessment, Former Kingston Prison for Women, 40 Sir John A. MacDonald Boulevard, Kingston, Ontario," dated March 27, 2019.

Based on the findings of XCG's Phase I ESA, XCG proceeded with a Phase II ESA to investigate soil and groundwater quality in the areas of potential environmental concern. This report follows the general requirements set out by CSA Standard Z769-00 (R2018). The requirements of Ontario Regulation (O. Reg.) 153/04, as amended, were not strictly followed; therefore, this Phase II ESA would not be suitable for use in support of the filing of a Record of Site Condition (RSC).

The key findings of the Phase II ESA conducted at 40 Sir John A. MacDonald Boulevard, Kingston, Ontario, are summarized below:

- 12 test pits were completed on July 15 and 16, 2019. Soil samples from the test pits were submitted for analyses of the following: petroleum hydrocarbons (PHCs) (Fractions F1 to F4), metals, pH, electrical conductivity (EC), sodium adsorption ration (SAR), polycyclic aromatic hydrocarbons (PAHs), and/or volatile organic compounds (VOCs).
- Six boreholes were advanced on the subject property with monitoring wells installed in all of them between June 25 and 26, 2019. Select soil samples were submitted for analyses of one or more of the following: PHCs, metals, pH, EC, SAR, PAHs, and/or VOCs. Monitoring wells were installed to depths ranging between 4.57 and 7.92 metres below the ground surface (bgs).
- Groundwater samples were collected from four of the newly installed monitoring wells on July 12 and 15, 2019, with supplemental sampling conducted on August 2, November 25, and December 11, 2019. The groundwater samples were submitted for analyses of one or more of the following: PHCs, metals, pH, EC, SAR, PAHs, and/or VOCs.
- The "Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act," dated April 15, 2011, by the Ministry of the

Environment (MOE, or the Ministry¹) was consulted in the assessment of soil and groundwater quality on the subject property. Table 3 Full Depth Generic Site Conditions Standards in a Non-Potable Ground Water Condition, and Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition, for residential/parkland/institutional land use, were used to evaluate soil and groundwater quality.

- In the 2019 investigations, relatively minor exceedances in soil of the MOE Table 3 and Table 7 standards were observed in six sampling locations for one or more of the following parameters: EC and metals (barium, lead, and mercury). Historical exceedances, found in soil in investigations prior to 2019, of PHCs, PAHs, VOCs, and metals were not found during the 2019 field investigations. The barium exceedances at the Phase II ESA Property are not considered to be indicative of a zone of contamination, but rather are considered to be naturally occurring. Therefore, no remedial action to address the elevated barium concentrations is required.
- In the 2019 investigations, relatively minor exceedances in groundwater of the MOE Table 3 or Table 7 standards were observed in one monitoring well, MW19-4, for PHCs (F3); however, subsequent sampling of this monitoring well showed no exceedances during two follow-up sampling events. Therefore, the exceedance observed during initial sampling of monitoring well MW19-4 is likely due to the sediment observed within the sample water. No remedial action is required with respect to groundwater quality on the Phase II ESA Property.
- Based on the contaminants observed and the groundwater flow direction, there is
 no indication that contamination is migrating off the property or causing an offproperty impact.

The overall conclusion of this Phase II ESA of the subject property located at 40 Sir John A. MacDonald Boulevard, Kingston, Ontario, is that the findings of XCG's investigations indicate the presence of relatively minor soil contamination in various areas investigated. Based on the analytical results and the direction of groundwater flow, there is there is no indication that contamination is migrating off the property or causing an off-property impact.

ES 1.1 Limitations

The limitations detailed in Section 5.1 of this report apply to the entirety of the report, including this executive summary. This executive summary is not intended as a standalone document, but instead is intended to be read in conjunction with the whole report.

¹ Previously known as the MOE, the Ministry of the Environment and Energy (MOEE), and the Ministry of the Environment and Climate Change (MOECC). Currently known as the Ministry of the Environment, Conservation and Parks (MECP).

TABLE OF CONTENTS

1.	Introl	DUCTION	1-1
	1.1	Site Description	
	1.2	Background	1-1
		1.2.1 Recent Site Operations	1-1
		1.2.2 Previous Investigation and Assessment Reports	1-2
		1.2.3 2019 Phase I ESA – Additional Findings	1 - 3
	1.3	Scope of Subsurface Investigations	1-4
2.	FIELD	Investigation Methodology	
	2.1	Summary of Sampling and Analytical Program	
	2.2	Test Pit Investigation	2-4
	2.3	Monitoring Well Installation	2-4
	2.4	Monitoring Well Development	2-4
	2.5	Groundwater Sampling	2-5
	2.6	Quality Assurance and Quality Control	2-5
3.	FIELD	Observations	3-1
	3.1	Soil Quality	3-1
	3.2	Groundwater Quality	
	3.3	Groundwater Elevations and Flow Direction	3-1
4.	ANALY	TICAL RESULTS	4-1
	4.1	Discussion of Applicable Guidelines	
	4.2	Analytical Results for Soil	4-1
	4.3	Analytical Results for Groundwater	
	4.4	Discussion of Analytical Results	
5.	LIMITA	ATIONS AND CONCLUSIONS	5-1
	5.1	Limitations	5-1
	5.2	Conclusions	
6.	REFER	ENCES	6-1
Тав	LES		
		oling Program - Phase II ESA	2-1
Table	2 Sum	mary of Monitoring Well Construction Detailsend of	:.2 i
Table	3 Sumi	mary of Groundwater Elevationsend of	text
		mary of Analytical Results for BTEX and PHCs in Soilend of	
		mary of Analytical Results for Metals and Inorganics in Soilend of	
		mary of Analytical Results for PAHs in Soilend of	
		mary of Analytical Results for VOCs in Soilend of	
		mary of Analytical Results for PHCs and BTEX in Groundwaterend of	
		mary of Analytical Results for Metals in Groundwaterend of	
		nmary of Analytical Results for VOCs in Groundwater end of	

TABLE OF CONTENTS

FIGURES

Figure 1	Sample Locations	end of text
Figure 2	Groundwater Elevations (July 12, 2019)	end of text
Figure 3	Exceedances in Soil	end of text
Figure 3A	Exceedances in Soil - Insert 'A'	end of text
Figure 3B	Exceedances in Soil - Insert 'B'	end of text
Figure 3C	Exceedances in Soil- Insert 'C'	end of text
Figure 4	BTEX-PHCs Exceedances in Groundwater	end of text

APPENDICES

Appendix A	Qualificat	ions of XCG	Project Personne	:1
------------	------------	-------------	------------------	----

- Appendix B Test Pit and Borehole Logs
- Appendix C Laboratory Certificates of Analyses
- Appendix D Communication Records

1. Introduction

1.1 Site Description

XCG Consulting Limited (XCG) was retained by Siderius Developments Ltd. to conduct a Phase II Environmental Site Assessment (ESA) of the property at 40 Sir John A. MacDonald Boulevard, in Kingston, Ontario (subject property or site).

The subject site consists of one irregular shaped building comprising a total footprint of approximately 1,918 square metres (20,645 square feet) located on a 3.28-hectare (8.11-acre) parcel of land on the south side of Union Street and west of Sir John A. MacDonald Boulevard in Kingston, Ontario. The subject property is zoned "Institutional Use" and is situated in an area that predominately consists of institutional as well as residential uses.

The building on the subject site is near the centre of the site, towards the east. There is a parking area near the northwest corner of the property, and a laneway that runs to the south side of the building. There is a sidewalk from Sir John A. MacDonald Boulevard to the entrance of the building. The remainder of the property is landscaped with grass and some trees along the edge of the property. The subject site was historically occupied by the Prison for Women, and is now primarily vacant. Small portions of the property have, in the last few years, been used for storage of wood beams, electrical cable, and assistive devices (wheelchairs, canes, crutches) as well as police training.

1.2 Background

Based on the results of the Phase I ESA completed by XCG (March 27, 2019), including the site visit, information provided by persons knowledgeable about the subject property, records reviewed, the historical review of the subject property, and receipt and review of the response from the Ministry of the Environment, Conservation and Parks (MECP, or the Ministry²) regarding the Freedom of Information (FOI) request, several potentially contaminating activities were identified on the subject property and on the adjacent properties. They are discussed in the sections below.

1.2.1 Recent Site Operations

XCG is aware that a relatively small area located in the western portion of the site has at times been used for the placement of snow removed from Queen's University sidewalks, parking lots and curbs during plowing in the winter. This has the potential to have resulted in elevated sodium and chloride concentrations in the groundwater, electrical conductivity and Sodium Absorption Ratios (SAR) levels in the soil, as well as metals and petroleum hydrocarbon (PHC) impacts in soil and groundwater.

1-1

² Previously also known as the Ministry of the Environment (MOE), the Ministry of the Environment and Energy (MOEE), and the Ministry of the Environment and Climate Change (MOECC).

1.2.2 Previous Investigation and Assessment Reports

As part of the Phase I ESA, XCG reviewed the following reports previously prepared for the subject site:

- Jacques Whitford, 2004, "Phase I Environmental Site Assessment Report, Kingston Prison For Women Extra Parcel, 40 Sir John A. MacDonald, Kingston, Ontario K7M 1A1," dated March 8, 2004, prepared for Canada Lands Company CLC Limited. (Referred to in this report as "Extra Parcel Phase I ESA Report");
- Jacques Whitford, 2004, "Limited Phase II Environmental Site Assessment, 40 Sir John A. MacDonald, Kingston, Ontario," dated April 22, 2004, prepared for Canada Lands Company CLC Limited. (Referred to in this report as "Limited Phase II ESA Report");
- Jacques Whitford, 2004, "Supplemental Phase II Environmental Site Assessment, Kingston Prison for Women," dated September 9, 2004. (Referred to in this report as "Supplemental Phase II ESA Report");
- Jacques Whitford, 2005, "Phase III Delineation Environmental Site Assessment, Kingston prison for Women," dated January 13, 2005. (Referred to in this report as "Phase III ESA Report"); and
- Jacques Whitford, 2008, "Final Report: Soil Remediation Excavation, Former Kingston Prison for Women, 40 Sir John A. MacDonald Blvd., Kingston, Ontario," dated February 5, 2008, prepared for Canada Lands Company CLC Limited. (Referred to in this report as the "Remediation Report").

The 2004 Phase I ESA identified releases from underground storage tanks (USTs) on an adjacent property in 1990. Based on the location of the USTs directly adjacent to the subject property, the historical operation of these USTs is considered a potential source of environmental impact to the site.

A review of the five above reports was conducted by XCG, which compared the analytical results of the Phase II investigations to the 2011 Table 3 and Table 7 Standards. The historical analysis of the total petroleum hydrocarbons (TPH) fractions of gasoline/diesel and heavy oils were compared to the PHCs (F1 to F4).

Taking into account areas that were excavated as documented in the Remediation Report, the following soil sampling locations had concentrations of certain parameters above the 2011 Table 3 and Table 7 standards:

- BH04-2 GS-1 [0-0.76 metres below ground surface (bgs)]: total xylenes;
- MW04-6 SS-4 (1.8-2.4 metres bgs): lead;
- TP04-3 GS-4 (2.8 metres bgs): lead; and
- TP04-22 Composite (0.04 1.3 metres bgs): lead and zinc.

Additional samples collected as part of the Phase III ESA confirmed that the following exceedances identified as part of the Phase II investigations could be discounted:

• BH04-10 GS-1 (0 – 0.76 metres bgs): PHCs (F1 to F4) – composite sample BH04-19 was collected within a 1 metre radius (Phase III ESA Report) –

1-898-25-03/R18982503001.docx

concentrations of PHCs (F2, F3, and F4) were below detection limits and below applicable standard. PHC (F1) was not analyzed in the composite sample and, therefore, remains an outstanding concern.

- MW04-5 SS-1 (0 0.6 metres bgs): lead composite sample BH04-21 was collected within 1 metre radius (Phase III ESA Report) concentration of lead was below applicable standard.
- TP04-9 GS-1 (0.75 metres bgs): EC composite sample BH04-20 was collected within a 1 metre radius (Phase III ESA Report) – EC was below applicable standard.

XCG compared the analytical results of the 2007/2008 confirmatory samples to the 2011 Table 3 Standards. The following final confirmatory samples had concentrations of metals that exceed the current applicable standards:

- AEC1 floor sample F1 (barium) and wall samples EW SA4 (lead), EW SA8 (lead), and WW SA2 (barium);
- AEC2 wall samples WW SA1 (lead) and NW SA2 (lead); and
- AEC3 wall samples WW SA1 (mercury), WW SA2 (mercury), and SW SA6 (mercury).

A pH value of 10.48 was identified in a soil sample in BH04-9. This area was excavated as part of the 2008 remediation (AEC1). However, confirmatory samples were not analyzed for pH.

A total of six composite soil samples were submitted for PAHs analysis. Some PAHs were detected but were below applicable standards in two samples and another sample had method detection limits (MDLs) above the 2011 Table 3 and Table 7 Standards.

Groundwater samples were collected from five on-site monitoring wells and analyzed for BTEX, PHCs, metals, and conductivity. Concentrations of all analyzed parameters were below the 2011 Table 3 and Table 7 standards, with the exception of PHC (F3) in one monitoring well (MW04-6), which exceeded the 2011 Table 3 and Table 7 standards.

1.2.3 2019 Phase I ESA – Additional Findings

The 2019 Phase I ESA investigation confirmed all of the above potential sources of environmental impacts, and also identified the following additional potential sources of environmental impacts:

Underground Storage Tanks – Current

The ERIS Environmental Database report identified records of a 4,546-litre capacity diesel fibreglass single wall UST and one 4,546-litre capacity private fuel storage tank as well as two historical 4,546-litre capacity diesel fuel fibreglass single wall USTs. The locations of the USTs are unknown. A customer service advisor with the TSSA reported to XCG that the TSSA database has one record of an active fuel-related UST. Based on additional information received since the Phase I ESA was finalized, the above-listed USTs were determined to be, or to have been, located on the federally owned property (i.e. Heating Plant/Penitentiary Museum) south of the subject

1-898-25-03/R18982503001.docx

property. Therefore, these USTs are no longer considered to be a concern with respect to potential impacts on the subject property.

Fill Materials

Site personnel indicated that fill was placed to level the site following the selective demolition of the additions on the north side of the building. The remnants of the walls may have been graded on-site, with a thin layer of topsoil placed atop the fill. The source of the fill, as well as the quantity, is unknown and therefore presents a potential source of significant environmental impact.

1.3 Scope of Subsurface Investigations

The scope of the Phase II ESA work conducted by XCG on the subject property consisted of the following:

- XCG co-ordinated the mobilization and demobilization of all personnel and equipment required to complete the work. Prior to the subsurface investigations, utility locates were carried out in all of the areas where subsurface work was conducted.
- Six boreholes were advanced on the subject property at locations in the vicinity of features of concern listed above. The boreholes were drilled to at least 1.5 metres below the groundwater table. The maximum depth was 7.9 metres bgs. Within the overburden, soil samples were collected using a split spoon sampler at 0.61-metre intervals. An air rotary drill or coring tool was used within the bedrock.
- Approximately 19 test pits were completed in several of the areas of concern listed above. During test pit excavations, observations of the soil conditions were made and recorded, and representative soil samples were collected at appropriate intervals in each test pit.
- Total organic vapour (TOV) concentrations were measured with a photoionization detector (PID) in the headspaces of all soil samples collected during borehole drilling and test pit excavation on-site. Based on the results of the TOV concentrations, any evidence of staining and visual appearance, soil samples were selected for analysis. Sample collection and submission were done in accordance with standard chain-of-custody procedures.
- Monitoring wells were installed in all boreholes advanced. Each monitoring well was constructed with a 3.5- or a 5-centimetre diameter, flush threaded, Schedule 40 PVC pipe and slotted well screen. Each monitoring well screen was placed so as to intercept the water table surface. From the top of the screen to the ground surface, the annulus of each borehole was backfilled with bentonite clay. Each well was completed with a stick-up casing.
- After an appropriate period following installation and development of the
 monitoring wells (to allow the groundwater to equilibrate) the depth to static water
 level was measured in each well using a Slope Indicator water level tape.
 Following the water table depth measurement, each well was purged and sampled
 using a low flow sampling method. Groundwater samples were collected from
 each well and sealed in laboratory-prepared bottles. Groundwater samples were

INTRODUCTION

collected from the six new monitoring wells installed and from two existing monitoring wells on the subject property. Sample collection and submission was done in accordance with standard chain-of-custody procedures.

• An elevation survey was completed to determine the top of pipe elevation at each of the six new monitoring wells and at the two historical monitoring wells. The survey information, combined with the water table depth measurements, was used to estimate groundwater flow direction.

2. FIELD INVESTIGATION METHODOLOGY

The field investigation activities for this Phase II ESA were conducted by Ms. Natalia Baranova, Ms. Kamin Paul, and Mr. Garnet Peters of XCG as follows:

- Borehole drilling and monitoring well installation June 25 and 26, 2019;
- Monitoring well development June 28, July 2 and 9 2019;
- Groundwater sampling July 12 and 15, and August 2, 2019;
- Test pit investigation July 15 and 16, 2019;
- Elevation survey August 26, 2019;
- Groundwater resampling November 25, 2019.

The Phase II ESA work was conducted under the supervision of Ms. Natalia Baranova and Mr. Kevin Shipley. The qualifications of the XCG personnel who worked on this project are described in Appendix A.

All field activities were conducted using XCG's standard field protocols. This section outlines the methodology used for the environmental investigation. It includes a summary of the sampling and analytical program and an outline of the quality assurance and quality control (QA/QC) program.

2.1 Summary of Sampling and Analytical Program

The specific locations investigated, rationale, and analyses performed on soil and groundwater samples collected during the environmental investigation activities are summarized in Table 1 below. Test pit and monitoring well locations are illustrated on Figure 1 at the end of text.

Table 1 - Sampling Program - Phase II ESA

Sample ID	Location	Location Rationale					
Existing Indestroyed)	U	(Note: MW04-1, MW04-2 MW04-3, and	MW04-4 assumed to be				
MW04-5	West Yard	To confirm groundwater quality at the subject site. No historical exceedances of BTEX, PHCs, or metals were identified at this well.	- VOCs, EC, and chloride				
MW04-6	Along the west property boundary.	To confirm groundwater quality at the subject site. No historical exceedances of BTEX or metals were identified at this well; however, a historical exceedance of PHC (F3) was identified in 2004.	- PHCs and metals				

Sample ID	Location	Rationale	Analytical
MW19-1	In the northwest corner of the property, west of the asphalt pad.	Required to investigate potential impacts to soil and groundwater from snow storage.	Soil: - PHCs, metals, chloride, EC, and SAR Groundwater: - PHCs, metals, chloride, EC, and VOCs
MW19-2	Along the west property boundary in the location of the historical well MW04-6.	MW19-2 is a replacement monitoring well for MW04-6. It is required to investigate historical exceedances if lead in soil (1.8-2.4 mbgs) and exceedances of lead and PHC (F3) in groundwater.	Soil: - PHCs, metals, and VOCs Groundwater: - Monitoring well dry, not sampled
MW19-3	North of the building in the location of the historical borehole BH04-2.	Required to investigate soil and groundwater quality in the location of the historical borehole BH04-2 where exceedances of xylenes were identified in soil (0-0.76 mbgs).	Soil: - PHCs, metals, EC, chloride, SAR, pH, PAHs, and VOCs Groundwater: - PHCs, metals, chloride, and VOCs
MW19-4	In the southwest corner on the Extra Parcel, in the location of the historical borehole BH04-10, north of MW04-5	Required to investigate soil and groundwater quality in the location of the historical borehole BH04-10 where exceedances of PHC (F1) were identified in soil (0-0.76 mbgs).	Soil: - PHCs, metals, EC, chloride, SAR, pH, PAHs, and VOCs Groundwater: - PHCs, metals, chloride, and VOCs
MW19-5	In the western portion of the site, south of MW19-1 and northeast of MW19-2	Required to investigate potential impacts to soil and groundwater from snow storage.	Soil: - PHCs, metals, chloride, EC, and SAR Groundwater: - Monitoring well dry, not sampled
MW19-6	South of the building, east of MW19-5.	Required to investigate potential impacts to soil and groundwater from snow storage.	Soil: - PHCs, metals, chloride, EC, and SAR Groundwater: - PHCs, metals, chloride, and EC
Test Pits	•	1	
TP19-1	In the northwest corner of the property, in the area of historical TP04-3.	Required to investigate soil quality in the area of TP04-3 where historical exceedances of lead were identified in soil (2.8 mbgs). Additionally, required to investigate soil quality near the snow storage area.	Soil: - Metals, pH, EC, SAR, and/or PAHs
TP19-2	North of the building, adjacent to MW19-3.	Required to delineate potential historical xylene impacts in soil.	Soil: - PHCs and VOCs

FIELD INVESTIGATION METHODOLOGY

Sample ID	Location	Rationale	Analytical
TP19-3 to TP19-5	North of the building, adjacent to MW19-3.	These sampling locations were removed from the work plan as no exceedances were identified in MW19-3 and TP19-2 soil samples.	Soil: - Test pits not completed, no samples collected
TP19-6 & TP19-7	West of the building along the south and southwest walls of the historical AEC3 excavation.	Required to investigate soil quality and delineate impacts where historical exceedances of mercury were identified in the wall samples of the AEC 3 excavation (excavation advanced to 0.5-2.5 mbgs).	Soil: - Metals, EC, SAR, pH, and/or PAHs
TP19-8	In the western portion of the property along the northwest corner of the historical AEC2 excavation.	Required to investigate soil quality and delineate impacts where historical exceedances of lead were identified in the wall samples of the AEC 2 excavation (excavation advanced to 1.4 mbgs).	Soil: - Metals, EC, SAR, pH, and/or PAHs
TP19-9	In the western portion of the property in the historical location TP04-22.	Required to investigate soil quality and delineate impacts where historical exceedances of lead and zinc were identified in TP04-22 (0.04-1.3 mbgs).	Soil: - Metals, EC, SAR, pH, and/or PAHs
TP19-10 to TP19-12	South of the building in the location of the historical AEC1 excavation -TP19-10: along the east wall -TP19-11: floor in the southern portion of AEC1 excavation -TP19-12: along the west wall	Required to investigate soil quality and delineate impacts where historical exceedances of in the wall and floor samples of the AEC 1 excavation (barium along the east wall and floor, lead along the west wall). Excavation was advanced to 0.91-1.07 mbgs.	Soil: - Metals, EC, SAR, pH, and/or PAHs
TP19-13 to TP19-16	In the southwest portion of the site, on the Extra Parcel; surrounding MW19-4 at ~8-10 m distance to the north, east, west, and south.	These sampling locations were removed from the work plan as no exceedances were identified in MW19-4.	Soil: - Test pits not completed, no samples collected
TP19-17 to TP19-19	Along the western property boundary; surrounding MW19-2 at 10 m distance to the north, east, and south.	Required to delineate historical lead soil impacts identified in MW04-6 (1.8-2.4 mbgs).	Soil: - Metals
Notes: VOCs PHCs F1 - F4 PAHs EC SAR		carbon fractions F1 to F4 atic hydrocarbons activity	

2.2 Test Pit Investigation

The test pit investigation was completed on July 15 and 16, 2019, by a private excavation company, using a mini excavator, and the work was supervised by Mr. Peters of XCG. A total of 12 test pits were completed in order to investigate various areas of concern that had been identified in the Phase I ESA completed by XCG. The test pit locations are shown on Figure 1 at the end of text.

The test pits were excavated to a maximum depth of 2.90 metres bgs. Details of the soil conditions encountered, including visual and olfactory observations, were recorded during the test pit excavation and are summarized on the test pit and borehole logs included in Appendix B.

Soil samples were collected by XCG from each test pit. Select samples were submitted to Caduceon Laboratories Ltd. (Caduceon) in Kingston, Ontario, for analyses of PHCs, metals, pH, EC, SAR, PAHs, and/or VOCs.

2.3 Monitoring Well Installation

The borehole drilling and monitoring well installation was completed between June 25 and 26, 2019, under XCG's direction, by G.E.T. Drilling Ltd of Napanee, Ontario. The boreholes were drilled using a CME 55 Solid stem auger. During drilling, soil samples were collected using a split spoon sampler. Select soil samples were submitted for analyses of one or more of the following: PHCs, metals, pH, EC, SAR, PAHs, and/or VOCs. The borehole/monitoring well locations are shown on Figure 1 at the end of text.

A total of six boreholes were advanced to depths ranging between 4.57 and 7.92 metres bgs with monitoring wells installed in all of them. Groundwater was encountered at depths ranging from 4.12 to 8.58 metres below top of pipe (m btop). The top of bedrock was encountered at depths ranging between 1.12 to 3.58 metres bgs.

Monitoring well MW19-2 was installed in poor quality bedrock that was suspected to be non-water bearing; therefore, a groundwater sample could not be collected from this location. Historical well MW04-6 was used as a replacement for the groundwater sample parameters due to its proximity to monitoring well MW19-2. Additionally, monitoring well MW19-5 appeared to be water bearing during drilling; however, it was found to be dry during subsequent sampling events. All other monitoring wells were installed such that the screened interval straddles the observed water table. Monitoring well MW19-2 was equipped with a 5.08 cm (2-inch) diameter screen and riser. All other monitoring wells were equipped with a 3.8 cm (1.5-inch) diameter screen and riser. The well installation details are included on the borehole logs in Appendix B.

2.4 Monitoring Well Development

The monitoring wells were developed by removing ten well volumes or by purging the well dry and allowing it to fully recover a minimum of three times. The wells were developed using Waterra inertial pumps (with foot valves). With the exception of monitoring wells MW19-1 and MW19-3, the monitoring wells exhibited a slow recovery time. No sheen or odour were detected during well development or sampling.

1-898-25-03/R18982503001.docx

2.5 Groundwater Sampling

Groundwater sampling was conducted on July 12, August 2, and November 25, 2019. The depth to static water level (SWL) was measured using an oil/water interface meter prior to and during monitoring well sampling. The oil/water interface meter was also used to check for the presence of a separate phase free product layer (if any) in all of the monitoring wells. The groundwater samples were collected using the low-flow sampling method. The samples were collected using dedicated tubing, and collecting samples directly into laboratory prepared bottles. The samples were submitted to Caduceon for analyses of one or more of the following: PHCs (F1-F4), metals, EC, chloride, and VOCs.

2.6 Quality Assurance and Quality Control

As part of XCG's field program, standard sample handling protocols were followed, including the use of dedicated sampling equipment, gloves, sample preservation, and proper laboratory submission procedures.

All samples were submitted for analysis to Caduceon, which follows strict QA/QC measures. Caduceon's in-house QA/QC measures include ongoing instrument calibration to recognised standards, replicate analysis, method spikes, method blanks, sample duplicates, and standard reference materials. All samples met the minimum requirements for QA/QC at Caduceon.

3. FIELD OBSERVATIONS

3.1 Soil Quality

Observations of the soil quality made during the test pit and borehole advancement are summarized in the test pit and borehole logs included in Appendix B.

Based on the soil quality observations made during the test pit and borehole advancement, the overburden at the subject site consists of topsoil, underlain by dark brown silt and clay, which is underlain by silty clay to bedrock. Bedrock was encountered at depths ranging from 1.1 to 3.6 metres bgs. Some brick and coal debris was encountered in all monitoring wells in the fill material. No odour or staining was observed in the overburden material.

3.2 Groundwater Quality

During the monitoring well purging prior to sampling, the groundwater in most of the wells was observed to initially have high sediment content, with the exception of monitoring wells MW19-4 and MW19-6. The turbidity was cleared through the purging.

During the development of the wells prior to sampling, the groundwater was not observed to be high in sediment. Sampling of monitoring well MW19-4 for PHCs resulted in some sediment content in the water; this is suspected to have been a result of stirred up water and sediment from the bottom of the well. This well was resampled on August 2, 2019, and again on November 25, 2019, to obtain more accurate results.

3.3 Groundwater Elevations and Flow Direction

An elevation survey of all newly installed monitoring wells, and one historical monitoring well on the subject site was completed on August 26, 2019. Monitoring well MW04-6 could not be found during the survey because it was buried during the test pitting activities.

Based on the elevation survey and water levels measured on July 12, 2019, the groundwater flows generally towards the southwest across the site. Figure 2 shows water table elevation contours and groundwater flow directions.

4. ANALYTICAL RESULTS

4.1 Discussion of Applicable Guidelines

The "Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act," dated April 15, 2011, by the MOE was consulted in the assessment of soil and groundwater quality on the subject property. Table 3 Full Depth Generic Site Conditions Standards in a Non-Potable Ground Water Condition, and Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition, for residential/parkland/institutional land use, were used to evaluate soil and groundwater quality.

The site is disconnected from all utility services, aside from power being drawn from across the street to power the fire alarms and exterior security lighting. The nearest body of water, the Cataraqui River, is less than 1 kilometre from the site.

Some areas of the site have an overburden depth of less than 2 metres, while others have an overburden thickness greater than 2 metres. Both the Table 3 and Table 7 standards were applied to account for the possibility of different standards being applied to different parts of the site.

The analytical results were compared to the Table 3 and 7 standards for coarse textured soil, based on observations of the presence of sandy based soils (i.e. with debris and sand).

4.2 Analytical Results for Soil

The analytical results for PHC (F1-F4) (Table 4), metals and inorganics (Table 5), PAHs (Table 6), and VOCs (Table 7) in soil are presented at the end of text. Laboratory Certificates of analyses are included in Appendix C. Figures 3, 3A, 3B, and 3C summarize the soil exceedances observed at the sampling locations for this investigation.

4.3 Analytical Results for Groundwater

The analytical results for PHC (F1-F4) (Table 8), metals and inorganics (Table 9), and VOCs (Table 10) in groundwater are presented at the end of text. Laboratory Certificates of analyses are included in Appendix C. Figure 4 summarizes the groundwater exceedances observed at the sampling locations for this investigation.

4.4 Discussion of Analytical Results

As previously mentioned in Section 4.1, the soil and groundwater results were compared to the MOE Table 3 and Table 7 standards. Several historical reports have been submitted by Jacques Whitford in 2004, 2005, and 2008. A full summary of these reports can be found in the document titled "Peer Review of Environmental Reports for the Former Kingston Prison for Women, 40 Sir John A. MacDonald Blvd., Kingston, Ontario," prepared by XCG and dated March 2, 2018. Historical sampling locations can be found in Figure 1 at the end of text.

Below is a summary of all the analytical results for soil sampling conducted in 2004 and 2019, with comparison of the results against the most recent MOE Table 3 and Table 7 standards. An overview of the analytical results in soil is depicted in Figures 3, 3A, 3B, and 3C, and analytical results in groundwater are depicted in Figure 4.

PHCs

Soil exceedances for PHCs (F1 – F4) were identified at BH04-10 in 2004. In 2004, several additional samples surrounding BH04-10 were also sampled for PHCs and were below the applicable MOE Table 3 and 7 standards. In 2019, the nearest sampling location to this former sampling location was monitoring well MW19-4, and the soil sample was below the applicable MOE Table 3 or Table 7 standards. No other soil exceedances for PHCs were observed during sampling conducted in 2004 and 2019.

Groundwater exceedances for PHCs (F1-F4) were observed in monitoring well MW04-6 during the 2004 sampling round. Subsequent sampling of this well in 2019 on two separate occasions showed no PHC exceedances.

As previously mentioned in section 3.2, the groundwater observed during well development of monitoring well MW19-4 was clear. The initial sample collected from monitoring well MW19-4 (after development) was brown and murky. This sample exceeded the MOE Table 3 and 7 guidelines for PHC (F3) (C34-50). Another sample was collected from monitoring well MW19-4 and submitted on August 2, 2019. This sample was clear and free from obvious sediment. The second sample met MOE Table 3 and 7 Standards. An additional sample was collected from monitoring well MW19-4 on November 25, 2019, and the analytical results were below the applicable MOE Table 3 and 7 standards. The exceedance observed during initial sampling of monitoring well MW19-4 is likely due to the sediment observed within the sample water. No remedial action is required with respect to groundwater quality on the Phase II ESA Property.

Metals and Inorganics

Soil exceedances of metals were identified at BH04-3, MW04-4, MW04-5, MW04-6, TP04-3, TP04-9, TP04-22, AEC1 F1, AEC1 EW SA4, AEC1 EW SA8, AEC2 WW SA1, AEC2 NW SA2, AEC3 WW SA1, AEC3 WW SA2, and AEC3 SW SA6 for one or more of the following: conductivity, barium, cobalt, lead, mercury, and zinc. The 2019 sampling results revealed that metals and inorganics contamination in soil is still present for one or more of conductivity, barium, lead, and mercury at sampling locations MW19-1, MW19-2, MW19-6, TP19-1 (North), TP19-11 (North/East), and TP19-18. A zinc exceedance was observed in TP04-22 during the 2004 sampling round. The nearest sampling location to TP04-22 is TP19-9, which showed no exceedances for zinc in 2019.

Based on XCG's experience with soil quality investigations at other sites in the Kingston area, it is common to find elevated barium concentrations associated with clay and clay-containing soils in this geographic region. As shown on the TP19-11 test pit log, the soil in the depth interval where the barium exceedance was identified was described as "silty sand." For the following reasons, it is the Qualified Person's (QP's) opinion that elevated barium concentrations are naturally-occurring at the Phase II

ESA Property, and that the barium exceedance found arises from these naturally-occurring conditions:

- The MOE Table 1 full depth background standard for barium, for residential / parkland / institutional / industrial / commercial / community property use, is 220 µg/g. According to MOE Rationale Document (April 15, 2011), Table 8.2 (page 385), the distribution of background barium concentrations measured in old urban parks across Ontario led to the derivation of an OTR₉₈ (98th percentile of the data distribution) for barium of 180 µg/g, with the lower confidence limit of the OTR₉₈ being 150 µg/g and the upper confidence limit being 300 µg/g. This means that it is very unlikely, in most geographic regions in Ontario, for naturallyoccurring barium concentrations to exceed 300 µg/g. However, on the Phase II ESA Property, numerous barium concentrations were measured across the site and several exceeded 300 µg/g. These elevated barium concentrations were located along the northwestern property line and south east of the main building and were all in soil described as containing primarily silty sand. There was no isolated area on the site that had unusually high concentrations of barium. Therefore, the evidence indicates that the elevated barium is associated with the silty sand, and not with any activity that took place on a particular area of the Phase II ESA Property.
- The Phase I ESA did not identify any potential anthropogenic source of barium. The activities that led to the determination of the areas of concern on the site are detailed in Section 1.2.3 above. None of the activities listed would be expected to have given rise to the release of barium across the site, to the extent that barium concentrations above 300 µg/g would be present over a wide area as described above.
- According to Guillet (1963) many occurrences of barite, a barium-rich mineral, have been reported in southeastern Ontario, principally in the Counties of Frontenac and Lanark. Many of these sources were described as vein deposits. Vein deposits are normally enclosed in solid rock; however, upon weathering they can form bodies of residual, or soil, deposits (I.L. Komov, 1994). Naturally barium-rich soils can be found in various places in North America. Brobst (1955) provides a list of residual barite deposits across the United States. Based on these references, the widespread presence of barite in the County of Frontenac, where Kingston is located, has led to the occurrence of barium-rich clays throughout this region.
- Appendix D contains recent email correspondence from Frank Crossley, a senior hydrogeologist with the MECP Kingston office, confirming that barium in soils is naturally elevated in the Kingston area. Mr. Crossley states in his email that barium concentrations in the Kingston area typically range naturally up to 550 μg/g, which is slightly less than the highest concentration found on the Phase II ESA Property.

In light of the above, the barium exceedances at the Phase II ESA Property are not considered to be indicative of a zone of contamination, but rather are considered to be

naturally occurring. Therefore, no remedial action to address the elevated barium concentrations is required.

No exceedances of metals in groundwater were observed in the 2004 or 2019 sampling rounds.

PAHs

The 2004 sampling round had some elevated MDLs in a composite sample of BH04-13 and BH04-14. None of the other samples collected in the 2004 and the 2019 sampling rounds exceeded MOE Table 3 or 7 standards.

PAH analysis in groundwater was not conducted in the 2004 or 2019 sampling rounds.

VOCs

No exceedances of VOCs were identified in soil or groundwater in the 2004 or 2019 sampling rounds.

The samples were submitted for analysis to Caduceon which follows strict QA/QC measures. All samples met the minimum requirements for QA/QC at Caduceon as supported by a Quality Assurance report included in Appendix C.

Based on comparison of the field duplicate results, the analytical results reported are considered representative of the conditions of the subject site and no data qualifications were made that would affect decision making. The overall objectives of the Phase II ESA were met.

5. LIMITATIONS AND CONCLUSIONS

5.1 Limitations

This Phase II ESA focussed on identifying actual contamination on the subject property located at 40 Sir John A. MacDonald Boulevard in Kingston, Ontario. It was not intended to be a detailed audit of all past or current operations. This is not a compliance audit.

Based upon findings of the Phase I ESA completed by XCG, sampling locations were selected to perform the Phase II ESA subsurface investigations. Conditions between and beyond the selected sampling locations may differ from those observed in the samples collected during this Phase II ESA. XCG cannot be held responsible for environmental conditions at the site that were not apparent from the available information.

This Phase II ESA does not meet the requirements for a Phase Two ESA as specified in Ontario Regulation (O. Reg.) 153/04, as amended. Therefore, this Phase II ESA would not be suitable for use in support of the filing of a RSC for the subject property.

The scope of this report is limited to the matters expressly covered. This report was prepared for the sole benefit of Siderius Developments Ltd. and may not be relied upon by any other person or entity. Any use or reuse of this document (or the findings, conclusions, or recommendations represented herein) by parties other than Siderius Developments Ltd. is at the sole risk of those parties.

5.2 Conclusions

The key findings of the Phase II ESA conducted at 40 Sir John A. MacDonald Boulevard in Kingston, Ontario, are summarized below:

- 12 test pits were completed on July 15 and 16, 2019. Soil samples from the test pits were submitted for analyses of the following: PHCs (F1 to F4), metals, pH, EC, SAR, PAHs, and/or VOCs.
- Six boreholes were advanced on the subject property with monitoring wells installed in all of them between June 25 and 26, 2019. Select soil samples were submitted for analyses of one or more of the following: PHCs, metals, pH, EC, SAR, PAHs, and/or VOCs. Monitoring wells were installed to depths ranging between 4.57 and 7.92 metres bgs.
- Groundwater samples were collected from four of the newly installed monitoring
 wells on July 12 and 15, 2019, with supplemental sampling conducted on
 August 2, November 25, and December 11, 2019. The groundwater samples were
 submitted for analyses of one or more of the following: PHCs, metals, pH, EC,
 SAR, PAHs, and/or VOCs.
- The "Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act," dated April 15, 2011, by the MOE was consulted in the assessment of soil and groundwater quality on the subject property. Table 3 Full Depth Generic Site Conditions Standards in a Non-Potable Ground Water

Condition, and Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition, for residential/parkland/institutional land use, were used to evaluate soil and groundwater quality.

- In the 2019 investigations, relatively minor exceedances in soil of the MOE Table 3 and Table 7 standards were observed in six sampling locations for one or more of the following parameters: EC and metals (barium, lead, and mercury). Historical exceedances, found in soil in investigations prior to 2019, of PHCs, PAHs, VOCs, and metals were not found in during the 2019 field investigations. The barium exceedances at the Phase II ESA Property are not considered to be indicative of a zone of contamination, but rather are considered to be naturally occurring. Therefore, no remedial action to address the elevated barium concentration is required.
- In the 2019 investigations, relatively minor exceedances in groundwater of the MOE Table 3 or Table 7 standards were observed in one monitoring well, MW19-4, for PHCs (F3); however, subsequent sampling of this monitoring well showed no exceedances during two follow-up sampling events. Therefore, the exceedance observed during initial sampling of monitoring well MW19-4 is likely due to the sediment observed within the sample water. No remedial action is required with respect to groundwater quality on the Phase II ESA Property.
- Based on the contaminants observed and the groundwater flow direction, there is
 no indication that contamination is migrating off the property or causing an offproperty impact.

The overall conclusion of this Phase II ESA of the subject property located at 40 Sir John A. MacDonald Boulevard, Kingston, Ontario, is that the findings of XCG's investigations indicate the presence of relatively minor soil contamination in various areas investigated. Based on the analytical results and the direction of groundwater flow, there is there is no indication that contamination is migrating off the property or causing an off-property impact.

6. REFERENCES

- 1. Ministry of Environment, "Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act," April 15, 2011;
- 2. Ontario Ministry of the Environment, "Guide for Completing Phase Two ESAs under O. Reg. 153/04," dated June 2011;
- 3. Ontario Ministry of the Environment, "Protocol for Analysis Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act," dated March 2004 (amended as of July 1, 2011);
- 4. XCG Consulting Limited, "Phase I Environmental Site Assessment, 40 Sir John A. MacDonald Boulevard, Kingston, Ontario," January 22, 2018 (draft report);
- 5. Jacques Whitford, 2004, "Phase I Environmental Site Assessment Report, Kingston Prison For Women Extra Parcel, 40 Sir John A. MacDonald, Kingston, Ontario K7M 1A1," dated March 8, 2004, prepared for Canada Lands Company CLC Limited. (Referred to in this letter as "Extra Parcel Phase I ESA Report");
- 6. Jacques Whitford, 2004, "Limited Phase II Environmental Site Assessment, 40 Sir John A. MacDonald, Kingston, Ontario," dated April 22, 2004, prepared for Canada Lands Company CLC Limited. (Referred to in this letter as "Limited Phase II ESA Report");
- 7. Jacques Whitford, 2004, "Supplemental Phase II Environmental Site Assessment, Kingston Prison for Women," dated September 9, 2004. (Referred to in this letter as "Supplemental Phase II ESA Report");
- 8. Jacques Whitford, 2005, "Phase III Delineation Environmental Site Assessment, Kingston prison for Women," dated January 13, 2005. (Referred to in this letter as "Phase III ESA Report"); and
- 9. Jacques Whitford, 2008, "Final Report: Soil Remediation Excavation, Former Kingston Prison for Women, 40 Sir John A. MacDonald Blvd., Kingston, Ontario," dated February 5, 2008, prepared for Canada Lands Company CLC Limited. (Referred to in this letter as the "Remediation Report").

TABLES

Table 2 Summary of Monitoring Well Construction Details

Monitoring Well ID	Installation Date	Depth to Bedrock (mbgs)	Depth to Bottom of Well (mbgs)	Depth to Water (mbtop) July 12, 2019	Sand Pack Interval (mbgs)	Screen Interval (mbgs)	Bentonite Interval (mbgs)	Ground Surface Elevation (masl)	Top of Pipe Elevation (masl)
XCG Well Installation	on 2019								
MW19-1	25-Jun-2019	-	7.47	6.88	3.96 - 7.47	4.42 - 7.47	0 - 3.96	98.54	99.45
MW19-2	25-Jun-2019	3.05	7.82	-	4.42 - 7.82	4.78 - 7.82	0 - 4.42	98.45	99.41
MW19-3	25-Jun-2019	-	4.57	4.12	2.29 - 4.57	2.44 - 4.57	0 - 2.29	99.26	100.19
MW19-4	25-Jun-2019	1.12	7.92	8.58	4.57 - 7.92	4.88 - 7.92	0 - 4.57	100.22	101.18
MW19-5	25-Jun-2019	2.87	6.32	6.94	3.20 - 6.32	3.28 - 6.32	0 - 3.20	98.6	99.51
MW19-6	26-Jun-2019	3.58	5.18	5.99	1.83 - 5.18	2.13 - 5.18	0 - 1.83	99.02	99.87
Jacques Whitford W	ell installation 20	04							
MW04-1	9-Aug-2004	2.30	4.22	-	0.3 - 2.00, 2.50 - 4.22	2.80 - 4.22	0 - 0.3, 2.00 - 2.50	99.96	99.86
MW04-2					No record fo	und			
MW04-3	9-Aug-2004	2.90	4.93	-	0.3 - 2.60 - 3.20 - 4.93	3.50 - 4.93	0 - 0.3, 2.60 - 3.20	99.86	99.76
MW04-4	9-Aug-2004	1.80	5.18	-	0.3 - 1.5, 2.00 - 5.18	2.20 - 5.18	0.1 - 0.3, 1.50 - 2.00	101.82	101.74
MW04-5	9-Aug-2004	0.70	7.84	7.46	0.3 - 1.00, 1.60 - 7.84	1.90 - 7.84	0.2 - 0.3, 1.00 - 1.60	99.63	99.53
MW04-6	9-Aug-2004	3.10	6.35	6.06	0.3 - 2.60, 3.30 - 6.35	3.50 - 6.35	0.2 - 0.3, 2.60 - 3.30	98.47	98.38

Table 3 Summary of Groundwater Elevations

Monitoring Well	Ground Surface Elevation (masd)	Top of Pipe Elevation (masd)	Groundwater Depth (mbtop)	Groundwater Elevation (masd)	Groundwater Depth (mbtop)	Groundwater Elevation (masd)									
	(Illasu)	(Illasu)	19-J	un-19	28-Ju	un-19	9-Jı	ıl-19	12-J	ul-19	2-Au	ıg-19	25-N	25-Nov-19	
MW19-1	98.54	99.45	-	-	6.71	92.74	6.82	92.63	6.88	92.570	5.16	94.290	-	-	
MW19-2	98.45	99.41	-	-	Dry	Dry	Dry	Dry	-	-	-	-	Dry	Dry	
MW19-3	99.26	100.19	-	-	3.295	96.895	4.03	96.16	4.12	96.070	-	-	-	-	
MW19-4	100.22	101.18	-	-	8.11	93.07	8.13	93.05	8.58	92.600	8.66	92.520	6.37	94.810	
MW19-5	98.6	99.51	-	-	Dry	Dry	Dry	Dry	Dry	Dry	-	-	Dry	Dry	
MW19-6	99.02	99.87	-	-	5.335	94.535	5.9	93.97	5.99	93.880	-	-	-	-	
MW04-1							No	t Found							
MW04-2							No	t Found							
MW04-3							No	t Found							
MW04-4							No	t Found							
MW04-5	99.63	99.53	5.24	94.29	5.24	94.29	6.75	92.78	7.46	92.070	Dry	Dry	-	-	
MW04-6	98.47	98.38	5.815	92.565	5.815	92.565	5.84	92.54	6.06	92.320	-	-	5.78	92.600	
N			-								•				

All elevations are relative to an on-site assumed datum.

mbtop Metres below top of pipe masd Metres above site datum

Table 4 Summary of Analytical Results for BTEX and PHCs in Soil

		1																	
Sample ID					BH04-1 SS-3	I RHNA-2 I I	BH04-3 SS-3	BH04-4 SS-2	BH04-5 GS-1	BH04-8 GS-1	BH04-10 GS-1	MW04-1 SS-4	MW04-3 SS-5	MW04-4 SS-3	MW04-5 SS-1	MW04-6 SS-4	TP04-1 GS-3		
Location		O. Reg. 153/04 (2011) - Table 3	•	Reportable	BH04-1 SS-3	BH04-2 GS-1	DUP #1 (BH04-2)		BH04-3 SS-3	BH04-4 SS-2	BH04-5 GS-1	BH04-8 GS-1	BH04-10 GS-1	MW04-1 SS-4	MW04-3 SS-5	MW04-4 SS-3	MW04-5 SS-1	MW04-6 SS-4	TP04-1 GS-3
Laboratory		Residential / Parkland /	(2011) - Table 7 Residential / Parkland /		Paracel	Paracel	Paracel		Paracel	Paracel	Paracel	Paracel	Paracel	PSC	PSC	PSC	PSC	PSC	PSC
Laboratory ID		Institutional	Institutional		-	-	-		-	-	-	-	-	-	-	-	-	-	-
Depth of Sample (m bgs))	Property Use	Property Use		1.52 - 2.13	0 - 0.76	0 - 0.76	RPD	1.52 - 2.13	0.76 - 1.37	0 - 0.76	0 - 0.76	0 - 0.76	1.8 - 2.2	2.6 - 2.9	1.4 - 1.8	0 - 0.6	1.8 - 2.4	3.0
Sample Date		7			5-Feb-04	5-Feb-04	5-Feb-04		5-Feb-04	5-Feb-04	5-Feb-04	5-Feb-04	5-Feb-04	9-Aug-04	9-Aug-04	9-Aug-04	9-Aug-04	9-Aug-04	9-Aug-04
Date of F1 Analysis		1			-	-	-		-	-	-	-	-	-	-	-	-	-	-
Date of BTEX Analysis		(μg/g)	(µg/g)	g) (μg/g)	-	-	-		-	-	-	-	-	-	-	-	-	-	-
Date of F2/F3/F4 Analysis	s	1			-	-	-		-	-	-	-	-	-	-	-	-	-	-
Date of F4G Analysis		1			-	-	-		-	-	-	-	-	-	-	-	-	-	-
Analytical Report Refere	nce	1			-	-	-		-	-	-	-	-	G244792	G244792	G244793	G244794	G244795	G244796
Benzene		0.21	0.21	0.02	< 0.002	< 0.05	< 0.002	NC	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Toluene		2.3	2.3	0.2	< 0.002	< 0.1	0.002	NC	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.002	< 0.002	< 0.002	< 0.002
Ethylbenzene		2	2	0.05	< 0.002	0.45	0.006	195%	< 0.002	< 0.002	0.004	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.002
Xylenes, total		3.1	3.1	0.03	< 0.002	10.6	0.008	200%	< 0.002	< 0.002	0.022	< 0.002	< 0.002	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.002
TDII gasalina/diasal/C5	F1 PHCs (C6-C10)	55	55	10										<10	<10	<10	<10	<10	<10
TPH - gasoline/diesel (C5-C24)	F2 PHCs (C10-C16)	98	98	5	20	40	20	NC	20	20	30	<10	80	<10.0	21.6	16.8	15.8	<10.0	<10.0
C27)	F3 PHCs (C16-C34)	300	300	10										<10.0	42.5	132	83.9	24.9	<10.0
• • • •	F4 PHCs (C34-C50) F4 PHC Gravimetric	2800	2800	10	50	<50	50	NC -	50	150	150	<50	1700	<10.0	11.0	481	53.4	16.2	<10.0
Notes	17 1 11C Gravinicule				-	-	_	_	_	-	-	_	_	-	-	_	-	-	_

Concentrations Reported in µg/g dry weight

Ltd PhII Jacques Whitford, 2004, "Limited Phase II Environmental Site Assessment, 40 Sir

John A. MacDonald, Kingston, Ontario," dated April 22, 2004, prepared for Canada

Lands Company CLC Limited

SuppPhII Jacques Whitford, 2004, "Supplemental Phase II Environmental Site Assessment,

Kingston Prison for Women," dated September 9, 2004

Ph III Jacques Whitford, 2005, "Phase III Delineation Environmental Site Assessment,

Kingston Prison for Women," dated January 13, 2005 Below laboratory RDL (Reportable Detection Limit)

Bold & Highlighted Parameter concentration exceeds MOE Table 3 & 7 Standards

Relative Percent Difference calculated as the absolute difference between duplicate RPD

results divided by the average expressed in percent.

NC Not Calculated

Not Analyzed/ Not applicable

MOE Table 3 Standards Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment

Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Full Depth Generic Site Condition Standards in a Non-Potable Groundwater

Condition, All Types of Property Use

MOE Table 7 Standards Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment

Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Generic Site Condition Standards for Shallow Soils in a Non-Potable Groundwater

Table 4 Summary of Analytical Results for BTEX and PHCs in Soil

Sample ID					TP04-2 GS-3	TP04-3 GS-4	TP04-4 GS-3	TP04-5 GS-3	TP04-6 GS-1	TP04-9 GS-1	TP04-10 GS-1	Fill Composite #1 (BH04-13 & BH04-14)	Fill Composite #2 (BH04-15 & BH04-16)	Fill Composite #3 (BH04-17 & BH04-18)	TP04-15 Composite	TP04-16 Composite	TP04-17 Composite
Location		O. Reg. 153/04	O. Reg. 153/04	Reportable	TP04-2 GS-3	TP04-3 GS-4	TP04-4 GS-3	TP04-5 GS-3	TP04-6 GS-1	TP04-9 GS-1	TP04-10 GS-1	BH04-13 & BH04-14	BH04-15 & BH04-16	BH04-17 & BH04-18	TP04-15 Composite	TP04-16 Composite	TP04-17 Composite
Laboratory		Residential / Parkland /	(2011) - Table 7 Residential / Parkland /	Detection Limit	PSC	Paracel & PSC	Paracel & PSC	Paracel & PSC	Paracel & PSC	Paracel & PSC	Paracel & PSC						
Laboratory ID		Institutional	Institutional		-	-	-	-	-	-	-	-	-	-	-	-	-
Depth of Sample (m bgs)		Property Use	Property Use		3.4	2.8	2.2	2.4	1.0	0.75	1.0	-	-	-	0.04 - 1	0.04 - 1	0.04 - 1
Sample Date		1			9-Aug-04	5-Nov-04	5-Nov-04	5-Nov-04	26-Nov-04	26-Nov-04	26-Nov-04						
Date of F1 Analysis		1			-	-	-	-	-	-	-	-	-	-	-	-	-
Date of BTEX Analysis		(µg/g)	(µg/g)	(µg/g)	-	-	-	-	-	-	-	-	-	-	-	-	-
Date of F2/F3/F4 Analysis	}	1			-	-	-	-	-	-	-	-	-	-	-	-	-
Date of F4G Analysis		1			-	-	_	_	-	-	-	_	_	_	_	_	-
Analytical Report Refere	nce	_			G244797	G244798	G244799	G244800	G244801	G244803	G244804	-	-	-	-	-	-
Benzene		0.21	0.21	0.02	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.002	< 0.002	-	-	-	-	-	-
Toluene		2.3	2.3	0.2	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.003	< 0.002	-	-	-	-	-	-
Ethylbenzene		2	2	0.05	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	-	-	-	-	-	-
Xylenes, total		3.1	3.1	0.03	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	-	-	-	-	-	-
TPH - gasoline/diesel (C5-	F1 PHCs (C6-C10)	55	55	10	<10	<10	<10	<10	<10	<10	<10	-	-	-	-	-	-
C24)	F2 PHCs (C10-C16)	98	98	5	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 10	< 10	< 10	< 10	< 10	< 10
,	F3 PHCs (C16-C34)	300	300	10	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	232	< 10	< 10	< 10	< 10	< 10
TPH - heavy oils (C24-C50)	F4 PHCs (C34-C50) F4 PHC Gravimetric	2800	2800	10	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	726 -	< 10	< 10	< 10	< 10	< 10

Concentrations Reported in µg/g dry weight

Ltd PhII Jacques Whitford, 2004, "Limited Phase II Environmental Site Assessment, 40 Sir

John A. MacDonald, Kingston, Ontario," dated April 22, 2004, prepared for Canada

Lands Company CLC Limited

SuppPhII Jacques Whitford, 2004, "Supplemental Phase II Environmental Site Assessment,

Kingston Prison for Women," dated September 9, 2004

Ph III Jacques Whitford, 2005, "Phase III Delineation Environmental Site Assessment,

Kingston Prison for Women," dated January 13, 2005 Below laboratory RDL (Reportable Detection Limit)

Bold & Highlighted Parameter concentration exceeds MOE Table 3 & 7 Standards

Relative Percent Difference calculated as the absolute difference between duplicate RPD

results divided by the average expressed in percent.

NC Not Calculated

Not Analyzed/ Not applicable

MOE Table 3 Standards Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment

Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Full Depth Generic Site Condition Standards in a Non-Potable Groundwater

Condition, All Types of Property Use

MOE Table 7 Standards Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment

Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Generic Site Condition Standards for Shallow Soils in a Non-Potable Groundwater

Table 4 Summary of Analytical Results for BTEX and PHCs in Soil

Sample ID	Sample ID				TP04-18 Composite	BH04-19 Composite "D"	MW19-1	MW	19-2		MW19-3			
Location		O. Reg. 153/04 (2011) - Table 3	O. Reg. 153/04 (2011) - Table 7	Reportable	TP04-18 Composite	BH04-19 Composite	MW19-1 6"-2'	MW19-2 4'-6'9"	MW19-2 7'3"- 10'	MW19-3 9"-3'4"	MW19-3 6'6"-8'	MW19-3 20'-21'	MW19-4 2'-3'8"	
Laboratory	Laboratory		Residential /		Paracel & PSC	Paracel & PSC	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	
Laboratory ID		Parkland / Institutional	Parkland / Institutional		-	-	B19-18946-1	B19-18946-2	B19-20317-2	B19-18946-3	B19-20317-3	B19-18946-4	B19-18946-5	
Depth of Sample (m bgs	s)	Property Use	Property Use		0.04 - 1	0.04 - 0.76	0.46 - 0.61	1.22 - 2.06	2.21 - 3.05	0.23 - 1.02	1.98 - 2.44	6.1 - 6.40	0.61 - 1.12	
Sample Date					26-Nov-04	13-Dec-04	25-Jun-19	25-Jun-19	25-Jun-19	25-Jun-19	25-Jun-19	25-Jun-19	25-Jun-19	
Date of F1 Analysis					-	-	27-Jun-19	27-Jun-19	10-Jul-19	27-Jun-19	-	27-Jun-19	27-Jun-19	
Date of BTEX Analysis		(µg/g)	(µg/g)	(µg/g)	-	-	27-Jun-19	27-Jun-19	-	27-Jun-19	10-Jul-19	-	27-Jun-19	
Date of F2/F3/F4 Analys	is				-	-	27-Jun-19	27-Jun-19	11-Jul-19	27-Jun-19	-	27-Jun-19	27-Jun-19	
Date of F4G Analysis		_			-	-	27-Jun-19	27-Jun-19	11-Jul-19	27-Jun-19	-	27-Jun-19	27-Jun-19	
Analytical Report Refere	ence	1			-	-	B19-18946	B19-18946	B19-20317	B19-18946	B19-20317	B19-18946	B19-18946	
Benzene		0.21	0.21	0.02	-	-	-	< 0.02	< 0.02	< 0.02	< 0.02	-	< 0.02	
Toluene		2.3	2.3	0.2	-	-	-	< 0.2	< 0.2	< 0.2	< 0.2	-	< 0.2	
Ethylbenzene		2	2	0.05	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	-	< 0.05	
Xylenes, total		3.1	3.1	0.03	-	-	-	< 0.03	< 0.03	< 0.03	< 0.03	-	< 0.03	
TPH - gasoline/diesel (C5-	F1 PHCs (C6-C10)	55	55	10	-	-	< 10	< 10	< 10	< 10	-	< 10	< 10	
C24)	F2 PHCs (C10-C16)	98	98	5	< 10	< 10	< 6	< 5	< 6	< 5	-	< 5	< 5	
, , , , , , , , , , , , , , , , , , ,	F3 PHCs (C16-C34)	300	300	10	< 10	< 10	< 10	14	11	< 10	-	< 10	< 10	
TPH - heavy oils (C24-C50)	F4 PHCs (C34-C50) F4 PHC Gravimetric	2800	2800	10	< 10	< 10	< 10	< 10	< 10	< 10	-	< 10	< 10	
Natas					1			1		1				

Concentrations Reported in µg/g dry weight

Ltd PhII Jacques Whitford, 2004, "Limited Phase II Environmental Site Assessment, 40 Sir

John A. MacDonald, Kingston, Ontario," dated April 22, 2004, prepared for Canada

Lands Company CLC Limited

SuppPhII Jacques Whitford, 2004, "Supplemental Phase II Environmental Site Assessment,

Kingston Prison for Women," dated September 9, 2004

Ph III Jacques Whitford, 2005, "Phase III Delineation Environmental Site Assessment,

Kingston Prison for Women," dated January 13, 2005 Below laboratory RDL (Reportable Detection Limit)

Bold & Highlighted Parameter concentration exceeds MOE Table 3 & 7 Standards

Relative Percent Difference calculated as the absolute difference between duplicate RPD

results divided by the average expressed in percent.

NC Not Calculated

Not Analyzed/ Not applicable

MOE Table 3 Standards Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment

Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Full Depth Generic Site Condition Standards in a Non-Potable Groundwater

Condition, All Types of Property Use

MOE Table 7 Standards Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment

Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Generic Site Condition Standards for Shallow Soils in a Non-Potable Groundwater

Table 4 Summary of Analytical Results for BTEX and PHCs in Soil

Sample ID					MW19-5	MW19-6	TP19-2		
Location	Location		O. Reg. 153/04	Reportable Detection	MW19-5 9"-3'4"	MW19-6 0'-1'6"	TP19-2 (0.8)	Soil Duplicate	
Laboratory		(2011) - Table 3 Residential /	(2011) - Table 7 Residential / Parkland / Institutional	Limit	Caduceon	Caduceon	Caduceon	Caduceon	
Laboratory ID		Parkland / Institutional			B19-19072-1	B19-19072-2	B19-21395-4	B19-21395-4	
Depth of Sample (m bgs)		Property Use	Property Use		0.229 - 1.02	0 - 0.457	0.8	0.8	
Sample Date			1		26-Jun-19	26-Jun-19	15-Jul-19	15-Jul-19	
Date of F1 Analysis		7		(hā\ā)	28-Jun-19	28-Jun-19	17-Jul-19	17-Jul-19	
Date of BTEX Analysis		(μg/g)	(µg/g)		-	-	17-Jul-19	17-Jul-19	
Date of F2/F3/F4 Analysi	s	7			27-Jun-19	27-Jun-19	18-Jul-19	18-Jul-19	
Date of F4G Analysis		7			02-Jul-19	02-Jul-19	-	-	
Analytical Report Refere	nce				B19-19072	B19-19072	B19-21395	B19-21395	
Benzene		0.21	0.21	0.02	-	-	< 0.02	< 0.02	
Toluene		2.3	2.3	0.2	-	-	< 0.2	< 0.2	
Ethylbenzene		2	2	0.05	-	-	< 0.05	< 0.05	
Xylenes, total		3.1	3.1	0.03	-	-	< 0.03	< 0.03	
TPH - gasoline/diesel (C5-	F1 PHCs (C6-C10)	55	55	10	< 10	< 10	< 10	< 10	
C24)	F2 PHCs (C10-C16)	98	98	5	< 5	< 5	< 5	< 5	
	F3 PHCs (C16-C34)	300	300	10	< 10	29	< 10	< 10	
TPH - heavy oils (C24-C50)	F4 PHCs (C34-C50)	2000	2000	10	< 10	34	< 10	< 10	
	F4 PHC Gravimetric	2800	2800	10	-	580	-	-	

Concentrations Reported in µg/g dry weight

Ltd PhII Jacques Whitford, 2004, "Limited Phase II Environmental Site Assessment, 40 Sir

John A. MacDonald, Kingston, Ontario," dated April 22, 2004, prepared for Canada

Lands Company CLC Limited

Jacques Whitford, 2004, "Supplemental Phase II Environmental Site Assessment, SuppPhII

Kingston Prison for Women," dated September 9, 2004

Ph III Jacques Whitford, 2005, "Phase III Delineation Environmental Site Assessment,

Kingston Prison for Women," dated January 13, 2005 Below laboratory RDL (Reportable Detection Limit)

Bold & Highlighted Parameter concentration exceeds MOE Table 3 & 7 Standards

Relative Percent Difference calculated as the absolute difference between duplicate RPD

results divided by the average expressed in percent.

NC Not Calculated

Not Analyzed/ Not applicable

MOE Table 3 Standards Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment

Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Full Depth Generic Site Condition Standards in a Non-Potable Groundwater

Condition, All Types of Property Use

MOE Table 7 Standards Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment

Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Generic Site Condition Standards for Shallow Soils in a Non-Potable Groundwater

Table 5 Summary of Analytical Results for Metals and Inorganics in Soil

Location				BH04-1 GS-1		BH04-2 GS-1		BH04-3 GS-1	BH04-4 SS-2	BH04-5 GS-1	BH04-8 GS-1	BH04-10 GS-1	MW04-1 SS-4	MW04-1 COMP	MW04-3 SS-5	MW04-3 COMP	MW04-4 SS-3	MW04-4 COMP	MW04-5 SS-1	MW04-6 SS-4	TP04-1 GS-3	TP04-2 GS-3	TP04-3 GS-4	TP04-4 GS-3	TP04-5 GS-3	TP04-6 GS-1	TP04-9 GS-1	TP04-10 GS-1	Fill Composite #1 (BH04-13 & BH04-14)	3 #2 (BH04-15
Sample ID	O. Reg. 153/04 (2011) Table 3 Residential / Parkland / Institutional Property	O. Reg. 153/04 (2011) Table 7 Residential / Parkland / Institutional Property	Reportable Detection Limit	BH04-1 GS-1	BH04-2 GS-1	DUP #1		BH04-3 GS-1	BH04-4 SS-2	BH04-5 GS-1	BH04-8 GS-1	BH04-10 GS-1	MW04-1 SS-4	MW04-1 COMP	MW04-3 SS-5	MW04-3 COMP	MW04-4 SS-3	MW04-4 COMP	MW04-5 SS-1	MW04-6 SS-4	TP04-1 GS-3	TP04-2 GS-3	TP04-3 GS-4	TP04-4 GS-3	TP04-5 GS-3	TP04-6 GS-1	TP04-9 GS-1	TP04-10 GS-1	Fill Composite #1 (BH04-13 & BH04-14)	3 #2 (BH04-15
Original Report	Use	Use		Ltd Phil	Ltd Phil	Ltd Phil		Ltd Phll	Ltd Phil	Ltd Phll	Ltd Phil	Ltd Phil	Supp Phil	Supp Phil	Supp PhII	Supp Phil	Supp Phil	Supp Phil	Supp PhII	Supp Phil	Supp Phil	Supp Phil	Supp Phil	Supp PhII	Supp Phil	Supp Phll	Supp Phil	Supp Phil	Ph III	Ph III
Laboratory				Paracel	Paracel	Paracel	RPD	Paracel	Paracel	Paracel	Paracel	Paracel	PSC	Paracel & PSC	Paracel & PSC															
Laboratory ID				-	-	-		-	-	-		-	-		-			-	-	-		-	-	-	-	-	-	-	-	-
Depth of Sample (m bgs)	(µg/g)	(µg/g)	(µg/g)	0 - 0.76	0 - 0.76	0 - 0.76		0 - 0.76	0.76 - 1.37	0 - 0.76	0 - 0.76	0 - 0.76	1.8 - 2.2	0 - 1.2	2.6 - 2.9	0 - 1.2	1.4 - 1.8	0 - 1.2	0 - 0.6	1.8 - 2.4	3.0	3.4	2.8	2.2	2.4	1.0	0.75	1.0	-	-
Sample Date				5-Feb-04	5-Feb-04	5-Feb-04		5-Feb-04	5-Feb-04	5-Feb-04	5-Feb-04	5-Feb-04	9-Aug-04	5-Nov-04	5-Nov-04															
Date of Metals Analysis				-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Analytical Report Reference No.				-	-	-		-	-	-	-	-	G244792	G244793	G244794	G244795	G244796	G244797	G244798	G244799	G244800	G244801	G244802	G244803	G244804	G244805	G244807	G244808	-	-
pH (unitless)	Acceptable range: 6-9	Acceptable range: 6-9	-	8.22	8.27	8.31	0.5%	7.78	8.26	8.34	8.60	8.77	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
Conductivity (mS/cm)	0.7	0.7	0.001	0.2	0.2	0.22	10%	0.18	0.44	0.39	0.2	0.64	-	0.28	-	0.24	-	0.56	-	-	-	-	-	-	-	-	0.811	0.135	-	-
SAR (unitless)	5	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Antimony	7.5	7.5	0.5	< 1	< 1	< 1	NC	< 1	<1	<1	<1	< 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.2	< 0.2
Arsenic	18 390	18 390	0.5	2 110	240	140	0% 53%	2	140	130	60	100	202	350	63	200	124	- 80	162	187	266	225	169	125	204	191	108	202	2.7	2.2
Barium Bervllium	390	390	0.2	< 0.5	< 0.5	< 0.5	33% NC	0.5	< 0.5	< 0.5	< 0.5	<0.5	0.8	<0.5	0.3	<0.5	0.3	<0.5	0.6	0.7	0.9	0.6	0.6	0.6	0.9	1.1	0.5	0.8	0.6	1.0
Boron (Hot Water Soluble)	1.5	1.5	0.02	< 1	< 1	< 1	NC	< 1	< 1	< 1	< 1	< 1	-		-		-		-	-	-	-	-	-	-	-	-	- 0.0	-	-
Boron (total)	120	120	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium (VI)	8	8	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium	1.2	1.2	0.5	< 1	< 1	< 1	NC	< 1	< 1	< 1	< 1	< 1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1	< 1
Calcium	-	-	-	53,000	180,000	160,000	12%	23,000	86,000	130,000	240,000	220,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloride	NA	NA	-	10	10	15	40%	10	110	35	10	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Chromium, total	160	160	1	< 0.3	< 0.3	< 0.3	-	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	36	40	17	25	17	10	24	40	42	29	25	21	34	40	22	31	23	38
Cobalt	22 140	22 140	1	10 20	5 15	10 20	67% 29%	10	10 40	10 45	< 5 10	< 5 10	12	15 30	6	10 35	16	<5 10	8 28	27	13 28	11	9 24	9	22	10	8 18	11 21	18	11 27
Copper Cyanide, free	0.051	0.051	1	< 0.03	< 0.03	< 0.03	29% NC	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	18	30	8	33	10	10	- 28	- 21	28	- 19	24	16	- 22	21	18	21	18	- 21
Iron	0.031	0.051	- : -	13,000	9,600	13,000	30%	17,000	13,000	14,000	5,800	7,400	28,900	31,000	13,800	23,000	12,900	7,200	22,000	28,000	33,400	26,300	22,700	21,900	31300	30,900	20,900	28,600	20,300	30,500
Lead	120	120	5	35	20	30	40%	25	60	100	15	75	8	33	<5	72	152	79	132	121	7	21	194	<5	50	45	32	54	56	29
Magnesium	-	-	-	11,000	9,800	10,000	2%	7,600	11,000	13,000	9,000	17,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1 -
Manganese	-	-	-	-	-	-	-	-	-	-	-	-	1,020	NA	339	NA	276	NA	688	587	468	539	488	463	745	545	516	772	369	470
Mercury	0.27	0.27	0.005	< 0.1	< 0.1	< 0.1	NC	< 0.1	< 0.1	0.1	< 0.1	< 0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Molybdenum	6.9	6.9	1	< 1	< 1	< 1	NC	< 1	1	< 1	< 1	< 1	0.4	<1	< 0.3	<1	0.7	<1	0.5	0.6	< 0.3	< 0.3	0.4	< 0.3	0.4	< 0.3	0.3	0.4	< 3	< 3
Nickel	100	100	1	15	20	25	22%	20	20	25	20	20	28	30	10	20	10	15	16	19	29	21	18	16	25	29	14	23	15	24
Nitrate (N) Nitrite (N)	-	-	-	< 1	< 1	< 1	NC NC	< 1 < 1	3 <1	< 1	< 1 < 1	< 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorous	-			<u> </u>	<u> </u>	< 1	NC	< I	<1	< 1	< 1	< 1	914	- NA	541	- NA	822	NA	1,540	1,590	733	757	735	829	842	643	939	1,020	557	818
Selenium	2.4	2.4	0.5	<1	<1	<1	NC	<1	<1	< 1	< 1	< 1	914	NA -	341	11/1	022	INA.	1,540	1,390	133	- 131	133	- 027	042	043	939	1,020	- 337	010
Silver	2.4	20	0.3	< 0.3	< 0.3	< 0.3	NC	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	<0.1	0.6	<0.1	<0.3	<0.1	<0.3	<0.1	1.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 1	<1
Sodium	-	-	-	200	< 200	< 200	NC	200	600	800	< 200	200	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Thallium	1.0	1.0	0.1	< 1	< 1	< 1	NC	< 1	< 1	< 1	< 1	< 1	-	-	-	-		-	-	-	-	-	-		-	-	-	-	< 1	< 1
Tin	-	-	-	< 5	< 5	< 5	NC	< 5	< 5	< 5	< 5	< 5	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
Titanium	-	-	-	-	-	-	-	-	-	-	-	-	778	NA	332	NA	351	NA	494	695	1,070	1,030	801	707	850	519	407	615	927	1,430
Uranium	23	23	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Vanadium	86	86	1	30	20	30	40%	40	30	30	< 10	20	41	50	22	40	17	10	32	38	49	39	35	33	44	34	30	39	43	51
Zinc	340	340	3	40	40	40	0%	60	40	60	< 20	20	62	120	14	80	79	40	119	83	66	53	67	32	54	80	47	68	63	126
Notes:																														

Jacques Whitford, 2004, "Limited Phase II Environmental Site Assessment, 40 Sir John A. MacDonald, Kingston, Ontario," dated Ltd PhII

April 22, 2004, prepared for Canada Lands Company CLC Limited

Jacques Whitford, 2004, "Supplemental Phase II Environmental Site Assessment, Kingston Prison for Women," dated September 9, 2004 SuppPhII

Jacques Whitford, 2005, "Phase III Delineation Environmental Site

Assessment, Kingston Prison for Women," dated January 13, 2005 8Jacques Whitford, 2008, "Final Report: Soil Remediation

Excavation, Former Kingston Prison for Women, 40 Sir John A.
MacDonald Blvd., Kingston, Ontario," dated February 5, 2008,
prepared for Canada Lands Company CLC Limited
Below laboratory RDL (Reportable Detection Limit)

Bold & Highlighted Parameter concentration exceeds MOE Table 3 & 7 Standards Relative Percent Difference calculated as the absolute difference between duplicate results divided by the average expressed in percent.

Not Analyzed/ Not applicable

MOE Table 3 Standards

Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition, All

Types of Property Use

Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act" (2011), Generic Site Condition Standards for Shallow Soils in a Non-Potable Groundwater Condition, All Types of Property Use

Table 5 Summary of Analytical Results for Metals and Inorganics in Soil

Location				TP04-19 Composite	TP04-20 Composite	TP04-21 Composite	TP04-22 Composite	TP04-11 Composite	TP04-12 Composite	TP04-13 Composite	TP04-14 Composite	BH04-19 Composite "D"	BH04-20 Composite "F"	BH04-21 Composite "E"	AEC1 F1	AEC1 F2	AEC1 F3	AEC1 F5	AEC1 NW SA5	AEC1 EW SA4	AEC1 NW SA6	AEC1 WW- SA7	AEC1 SW SA1	AEC1 EW SA8	AEC1 WW- SA9	AEC2 F1	AEC2 F2
Sample ID	O. Reg. 153/04 (2011) - Table 3 Residential / Parkland / Institutional Property	O. Reg. 153/04 (2011) - Table 7 Residential / Parkland / Institutional Property	Reportable Detection Limit	TP04-19 Composite	TP04-20 Composite	TP04-21 Composite	TP04-22 Composite	TP04-11 Composite	TP04-12 Composite	TP04-13 Composite	TP04-14 Composite	BH04-19 Composite "D"	BH04-20 Composite "F"	BH04-21 Composite "E"	AEC1 F1	AEC1 F2	AEC1 F3	AEC1 F5	AEC1 NW SA5	AEC1 EW SA4	AEC1 NW SA6	AEC1 WW- SA7	AEC1 SW SA1	AEC1 EW SA8	AEC1 WW- SA9	AEC2 F1	AEC2 F2
Original Report	Use	Use		Ph III	Ph III	Ph III	Remedial Excavation	Remedial Excavation	Remedial Excavation	Remedial Excavation	Remedial Excavation	Remedial Excavation	Remedial Excavation	Remedial Excavation	Remedial Excavation	Remedial Excavation	Remedial Excavation	Remedial Excavation	Remedial Excavation								
Laboratory				Paracel & PSC	Paracel & PSC	Paracel & PSC	Paracel & PSC	Paracel	Paracel	Paracel	Paracel	Paracel	Paracel	Paracel	Paracel	Paracel	Paracel	Paracel	Paracel	Paracel							
Laboratory ID	1				-	-	-	-					-		7520009-03	7520009-04	7520009-05	0803025-03	7520009-01	7520009-02	7520009-07	7520009-08	7520009-11	0803025-01	0803025-02	7490037-01	7490037-02
Depth of Sample (m bgs)	(μg/g)	(μg/g)	(µg/g)	0.04 - 1.36	0.04 - 1.5	0.04 - 1	0.04 - 1.3	0.04 - 0.80	0.04 - 0.45	0.04 - 1	0.04 - 0.85	0.04 - 0.7	0.04 - 1.0	0.04 - 0.6	-		-					-	-	-	-		_
Sample Date				26-Nov-04	26-Nov-04	26-Nov-04	26-Nov-04	30-Nov-04	30-Nov-04	30-Nov-04	30-Nov-04	30-Nov-04	30-Nov-04	30-Nov-04	21-Dec-07	21-Dec-07	21-Dec-07	14-Jan-08	21-Dec-07	21-Dec-07	21-Dec-07	21-Dec-07	21-Dec-07	14-Jan-08	14-Jan-08	30-Nov-07	30-Nov-07
Date of Metals Analysis	1				_			-	_			-			27-Dec-07	27-Dec-07	27-Dec-07	17-Jan-08	27-Dec-07	27-Dec-07	27-Dec-07	27-Dec-07	27-Dec-07	17-Jan-08	17-Jan-08	5-Dec-07	5-Dec-07
Analytical Report Reference	1																										
No.				-	-	-	-	-	-	-	-	-	-	-	7520009	7520009	7520009	803025	7520009	7520009	7520009	7520009	7520009	803025	803025	7490037	7490037
pH (unitless)	Acceptable range: 6-9	Acceptable range: 6-9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7.32	-	-	-	-	-	-	-	-
Conductivity (mS/cm)	0.7	0.7	0.001	-	-	-	-	0.172	0.191	0.163	0.181	0.192	0.219	0.248	-	-	-	-	-		-	-	-	-	-	-	-
SAR (unitless)	5	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Antimony	7.5	7.5	0.5	-	-	-	-	-	-	-	-	-	-	-	<1	<1	<1	-	<1	<1	<1	<1	<1	-	-	<1	<1
Arsenic	18	18	0.5	-	-	-	-	-	-	-	-	-	-	-	2	<1	2	-	4	5	2	3	1	-	-	2	1
Barium	390	390	1	152	144	248	178	-	-	-	-	-	-	-	566	361	180	-	145	197	124	212	48	-	-	163	138
Beryllium	4	4	0.2	0.8	0.6	1.0	0.7	-	-	-	-	-	-	-	1.2	<0.5	<0.5	< 0.5	<0.5	0.8	<0.5	0.7	<0.5	-	< 0.5	<0.5	<0.5
Boron (Hot Water Soluble) Boron (total)	1.5 120	1.5 120	0.02	-	-	-	-	-	-	-	-	-	-	-	0.6	< 0.5	< 0.5	-	0.6	0.6	< 0.5	< 0.5	< 0.5	-	-	< 0.5	< 0.5
Chromium (VI)	8	120 8	0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Cadmium	1.2	1.2	0.5	< 1	< 1	<1	< 1	-			-			-	0.7	0.7	<0.5		<0.5	0.7	<0.5	<0.5	<0.5			<0.5	<0.5
Calcium	- 1.2	1.2	0.5		-	- 1	- 1		_		-				-	-	-0.5		-0.5	-	-0.5	-0.5	-0.5				-0.5
Chloride	NA	NA	_	-	_	-	-	-	_	-	_	_	-	-	_	-	-	-	_	-	-	_	-	-	-	-	-
Chromium, total	160	160	1	28	27	37	27	-	-	-	-	-	-	-	56	50	28	-	25	32	20	32	9	-	-	33	32
Cobalt	22	22	1	9	9	12	9	-	-	-	-	-	-	-	14	13	10	-	9	12	7	11	6	-	-	10	10
Copper	140	140	1	28	23	26	34	-	-	-	-	-	-	-	37	33	21	-	26	27	19	22	10	-	-	18	13
Cyanide, free	0.051	0.051	-	,	-	-	-	-	-	-	-	-	-	-	-		-	-	-	1	-	-	-	-	-	-	-
Iron	-	-	-	30,600	23,600	32,300	25,500	-	-	-	-	-	-	-	38200	35500	22200	-	19900	24500	16300	23500	9840	-	-	27300	24100
Lead	120	120	5	90	66	46	131	-	-	-	-	-	97.3	78	14	15	29	-	74	177	50	74	15	135	-	11	9
Magnesium	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Manganese	- 0.27	- 0.27	- 0.005	544	464	539	474	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	0.27	0.27	0.005					-	-	-	-	-	-	-	<0.1	<0.1	<0.1	-	<0.1	0.1	<0.1	<0.1	<0.1	-	-	<0.1	<0.1
Molybdenum Nickel	6.9 100	6.9 100	1	< 3 19	< 3 17	< 3 26	< 3 19	-	-	-	-	-	-	-	<1 39	<1 34	<1 21	-	<1 19	<1 21	<1 15	<1 21	<1 12	-	-	<1 21	<1 18
Nitrate (N)	100	100	-	-	1/	- 20	- 19	-	-		-	-	-	-	-	34	- 21	-	19	- 21	13	- 21	- 12	-	-	21	- 18
Nitrite (N)	-	-	-	-	-			-	-		-	-	-		-	-			-			-					
Phosphorous	-	-		729	944	859	962	-			-				-		 	- -	-			-		-			
Selenium	2.4	2.4	0.5	-	-	-	-	-	_	-	-	-	-	-	<1	<1	<1	-	<1	<1	<1	<1	<1	-	-	<1	<1
Silver	20	20	0.2	< 1	< 1	< 1	< 1	-	-	-	-	-	-	-	0.4	0.4	0.3	-	0.3	0.4	<0.3	< 0.3	0.3	-	-	<0.3	<0.3
Sodium	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Thallium	1.0	1.0	0.1	-	-	-	-	-	-	-	-	-	-	-	<1	<1	<1	-	<1	<1	<1	<1	<1	-	-	<1	<1
Tin	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Titanium	-	-	-	696	930	1,480	1,060	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
Uranium	23	23	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium	86	86	1	35	37	50	40	-	-	-	-	-	-	-	64	66	43	-	37	49	31	46	18	-	-	47	50
Zinc	340	340	3	N/A	70	84	389	-	-	-	-	-	-	-	94	91	58	-	84	129	62	74	<20	-	-	48	54

Jacques Whitford, 2004, "Limited Phase II Environmental Site Assessment, 40 Sir John A. MacDonald, Kingston, Ontario," dated

April 22, 2004, prepared for Canada Lands Company CLC Limited

Jacques Whitford, 2004, "Supplemental Phase II Environmental Site Assessment, Kingston Prison for Women," dated September 9, 2004 SuppPhII

Jacques Whitford, 2005, "Phase III Delineation Environmental Site

Assessment, Kingston Prison for Women," dated January 13, 2005 8Jacques Whitford, 2008, "Final Report: Soil Remediation

Excavation, Former Kingston Prison for Women, 40 Sir John A.
MacDonald Blvd., Kingston, Ontario," dated February 5, 2008,
prepared for Canada Lands Company CLC Limited
Below laboratory RDL (Reportable Detection Limit)

Bold & Highlighted Parameter concentration exceeds MOE Table 3 & 7 Standards Relative Percent Difference calculated as the absolute difference between duplicate results divided by the average expressed in percent.

Not Analyzed/ Not applicable

MOE Table 3 Standards

Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition, All

Types of Property Use

Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Generic Site Condition Standards for Shallow Soils in a Non-Potable Groundwater Condition, All Types of Property Use

Table 5 Summary of Analytical Results for Metals and Inorganics in Soil

Location				AEC2 WW SA1	AEC2 NW SA2	AEC2 EW SA3	AEC2 SW SA4	AEC3-F1	AEC3-F2	AEC3-F3	AEC3-F4	AEC3 WW SA1	AEC3 WW SA2	AEC3 NW SA3	AEC3 NW SA4	AEC3 EW SA5	AEC3 SW SA6	MW	19-1	MW	/19-2	MW	/19-3	MW19-4	MW19-5	MW19-6
Sample ID	O. Reg. 153/04 (2011) - Table 3 Residential / Parkland / Institutional Property	O. Reg. 153/04 (2011) - Table 7 Residential / Parkland / Institutional Property	Reportable Detection Limit	AEC2 WW SA1	AEC2 NW SA2	AEC2 EW SA3	AEC2 SW SA4	AEC3-F1	AEC3-F2	AEC3-F3	AEC3-F4	AEC3 WW SA1	AEC3 WW SA2	AEC3 NW SA3	AEC3 NW SA4	AEC3 EW SA5	AEC3 SW SA6	MW19-1 6"- 2'	MW19-1 13'3"-16'6"	MW19-2 4'- 6'9"	MW19-2 7'3"- 10'	- MW19-3 9"- 3'4"	MW19-3 20'- 21'	MW19-4 2'- 3'8"	MW19-5 9"- 3'4"	MW19-6 0'- 1'6"
Original Report	Use	Use		Remedial Excavation	-	-	-	-	-	-	-	-	-													
Laboratory				Paracel	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon													
Laboratory ID				7490037-03	7490037-04	7490037-05	7490037-06	7480135-03	7490037-07	7490037-08	7490037-09	7480135-01	7480135-02	7490037-10	7490037-11	7490037-12	7490037-13	B19-18946-1	B19-20317-1	B19-18946-2	B19-20317-2	B19-18946-3	B19-18946-4	B19-18946-5	B19-19072-1	B19-19072-2
Depth of Sample (m bgs)	(µg/g)	(µg/g)	(µg/g)	_	-			-	-	-		-	-	-	-	-	-	0.46 - 0.61	4.04 - 5.03	1.22 - 2.06	2.21 - 3.05	0.23 - 1.02	6.1 - 6.40	0.61 - 1.12	0.229 - 1.02	0 - 0.457
Sample Date				30-Nov-07	30-Nov-07	30-Nov-07	30-Nov-07	29-Nov-07	30-Nov-07	30-Nov-07	30-Nov-07	29-Nov-07	29-Nov-07	30-Nov-07	30-Nov-07	30-Nov-07	30-Nov-07	25-Jun-19	25-Jun-19	25-Jun-19	25-Jun-19	25-Jun-19	25-Jun-19	25-Jun-19	26-Jun-19	26-Jun-19
Date of Metals Analysis				5-Dec-07	5-Dec-07	5-Dec-07	5-Dec-07	3-Dec-07	5-Dec-07	5-Dec-07	5-Dec-07	3-Dec-07	3-Dec-07	5-Dec-07	5-Dec-07	5-Dec-07	5-Dec-07	28-Jun-19	12-Jul-19	28-Jun-19	12-Jul-19	28-Jun-19	28-Jun-19	28-Jun-19	28-Jun-19	28-Jun-19
Analytical Report Reference	†																									
No.				7490037	7490037	7490037	7490037	7480135	7490037	7490037	7490037	7480135	7480135	7490037	7490037	7490037	7490037	B19-18946	B19-20317	B19-18946	B19-20317	B19-18946	B19-18946	B19-18946	B19-19072	B19-19072
pH (unitless)	Acceptable range: 6-9	Acceptable range: 6-9	_	-	-	-	-	-	-	-	7.73	-	-	-	-	-	-	7.77	-	-	-	7.89	7.67	7.36	7.59	7.92
Conductivity (mS/cm)	0.7	0.7	0.001	-	-	-	-	-		1 -	-	-	-	-	-	-	-	0.42	-	-	-	0.15	0.153	0.23	0.218	0.96
SAR (unitless)	5	5	-	-	-	-	-	_	-	-	-	_	-	-	-	-	-	1.82	-	-	-	0.212	0.38	0.146	0.284	0.627
Antimony	7.5	7.5	0.5	<1	<1	<1	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	0.8	< 0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Arsenic	18	18	0.5	5	6	3	4	1	3	2	2	4	3	10	2	3	3	4.9	2.9	4.7	3	4.5	4.6	3.7	3,6	2.1
Barium	390	390	1	240	164	274	236	124	216	176	142	165	127	153	190	79	123	278	322	275	157	154	132	207	251	190
Beryllium	4	4	0.2	< 0.5	0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1	1.2	0.7	0.8	0.5	0.5	1	0.9	0.2
Boron (Hot Water Soluble)	1.5	1.5	0.02	< 0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.25	-	0.28	-	0.23	0.23	0.27	0.21	0.28
Boron (total)	120	120	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	13.8	5.5	14.4	7.5	16.6	16.9	15.6	12.5	15.4
Chromium (VI)	8	8	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.2	-	< 0.2	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Cadmium	1.2	1.2	0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Chloride	NA	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	29	-	-	-	27	26	27	5	8
Chromium, total	160	160	1	32	23	37	32	22	32	26	22	22	43	24	26	16	17	44	50	91	31	19	18	36	39	9
Cobalt	22	22	1	12	9	12	11	8	12	10	8	8	5	9	9	6	7	19	21	12	13	9	9	15	17	5
Copper	140	140	1	26	35	26	24	15	21	22	19	28	39	18	21	43	27	39	29	77	15	25	27	23	32	18
Cyanide, free	0.051	0.051	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Iron	-	-	-	25900	22300	29800	26600	15800	26400	21700	19500	16800	16700	21000	22600	13200	15000	-	-	-	-	-	-	-	-	
Lead	120	120	5	134	135	63	62	6	42	41	60	71	68	36	71	74	55	191	12	84	18	83	63	47	76	66
Magnesium	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Manganese	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	<u> </u>		-	-	-	-
Mercury	0.27	0.27	0.005	0.2	0.1	0.1	0.1	0.2	0.1	< 0.1	<0.1	0.6	0.7	< 0.1	< 0.1	< 0.1	0.3	0.077	0.02	0.501	0.074	0.05	0.057	0.104	0.061	0.032
Molybdenum	6.9	6.9	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Nickel	100	100	I	23	19	26	23	18	20	20	18	20	13	20	19	17	18	33	37	23	21	18	18	29	29	11
Nitrate (N)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrite (N)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorous	- 2.4	- 2.4	0.5	1	1	1	1		1	1	-1				1	-1	-1	- 0.0	- 0.7		0.7	-	-	-	- 0.5	
Selenium	2.4	2.4	0.5	<1 <0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<1 <0.3	<1 0.3	<1 2.5	<1 <0.3	<1 <0.3	<0.3	<0.3	< 0.2	0.7 < 0.2	0.8 4.1	0.7 < 0.2	0.6 < 0.2	0.6 < 0.2	< 0.2	< 0.5 < 0.2	< 0.5 < 0.2
Silver Sodium	20	20	0.2	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.3	0.3	2.3	<0.5	<0.5	<0.3	<0.3	< 0.2	< 0.2	4.1	<u> > 0.∠</u>	< 0.2	<u> </u>	< 0.2	< 0.2	< 0.2
Thallium	1.0	1.0	0.1		1	1	1		1	-1					1	-1	-1	0.3	0.3	0.2	0.2	0.3	0.3	0.2	0.2	0.2
Tin			0.1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1		0.2	0.2	- 0.3	0.3			
Titanium	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	23	23	0.1		-		- -	-	-	- -	-	-	-	-		-	-	0.7	0.5	0.6	0.5	0.4	0.4	0.5	0.4	0.3
Uranium Vanadium	23 86	23 86	0.1	- 44	22	51	43		16	20	34	28	23	34	38	22	24	56	69	40	42	23	21	42	53	13
Vanadium Zinc	340	340	3	85 85	33 83	78	70	31 24	46 79	38 78	72	41	52	40	72	40	24 47	144	94	139	53	65	57	72	102	28
Zilic	340	340	3	83	83	/8	/0	24	/9	/8	12	41	32	40	12	40	4/	144	74	137		0.5	57	14	102	40

Jacques Whitford, 2004, "Limited Phase II Environmental Site Assessment, 40 Sir John A. MacDonald, Kingston, Ontario," dated

April 22, 2004, prepared for Canada Lands Company CLC Limited

Jacques Whitford, 2004, "Supplemental Phase II Environmental Site Assessment, Kingston Prison for Women," dated September 9, 2004 SuppPhII

Jacques Whitford, 2005, "Phase III Delineation Environmental Site

Assessment, Kingston Prison for Women," dated January 13, 2005 8Jacques Whitford, 2008, "Final Report: Soil Remediation

Excavation, Former Kingston Prison for Women, 40 Sir John A.
MacDonald Blvd., Kingston, Ontario," dated February 5, 2008,
prepared for Canada Lands Company CLC Limited
Below laboratory RDL (Reportable Detection Limit)

Bold & Highlighted Parameter concentration exceeds MOE Table 3 & 7 Standards Relative Percent Difference calculated as the absolute difference between duplicate results divided by the average expressed in percent.

Not Analyzed/ Not applicable

MOE Table 3 Standards

Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition, All

Types of Property Use

Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Generic Site Condition Standards for Shallow Soils in a Non-Potable Groundwater Condition, All Types of Property Use

Table 5 Summary of Analytical Results for Metals and Inorganics in Soil

Location							TP19-1							TP19-6						TP19-7		
Sample ID		Parkland /	Reportable Detection Limit	TP19-1 (0-1m)	Duplicate-3		TP19-1 (2.8 Centre)	TP19-1 (East)	TP19-1 (North)	TP19-1 (West)	TP19-6 (2m)	TP19-6 (2m North)	TP19-6 (2m South)	Duplicate-2		TP19-6 (2m East)	TP19-6 (2m West)	TP19-7 (2m)	TP19-7 (2m North)	TP19-7 (2m South)	TP19-7 (2m East)	TP19-7 (2m West)
Original Report	Use	Use		-	-		-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-
Laboratory				Caduceon	Caduceon	RPD	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	RPD	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon
Laboratory ID				B19-21395-14	B19-21395-19		B19-21395-15	B19-21395-16	B19-21395-17	B19-21395-18	B19-21395-2	B19-21395-6	B19-21395-7	B19-21395-5	.'	B19-21395-8	B19-21395-9	B19-21395-3	B19-21395-10	B19-21395-11	B19-21395-12	B19-21395-13
Depth of Sample (m bgs)	(µg/g)	(µg/g)	(µg/g)	1	1		2.8	2.7-2.9	2.7-2.9	2.7-2.9	2	2	2	0 - 2		2	2	2	2	2	2	2
Sample Date				15-Jul-19	15-Jul-19		15-Jul-19	15-Jul-19	15-Jul-19	15-Jul-19	15-Jul-19	15-Jul-19	15-Jul-19	15-Jun-19	•	15-Jul-19	15-Jul-19	15-Jul-19	15-Jul-19	15-Jul-19	15-Jul-19	15-Jul-19
Date of Metals Analysis				24-Jul-19	24-Jul-19		24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	•	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19
Analytical Report Reference	1					1																
No.				B19-21395(i)	B19-21395(i)		B19-21395(i)	B19-21395(i)	B19-21395(i)	B19-21395(i)	B19-21395(i)	B19-21395(i)	B19-21395(i)	B19-21395(i)		B19-21395(i)	B19-21395(i)	B19-21395(i)	B19-21395(i)	B19-21395(i)	B19-21395(i)	B19-21395(i)
pH (unitless)	Acceptable range: 6-9	Acceptable range: 6-9	-	7.37	7.37	0.00%	-	-	-	-	7.27	-	-	-	-	-	-	7.05	-	-	-	-
Conductivity (mS/cm)	0.7	0.7	0.001	0.38	0.37	2.65%	-	-	-	-	0.16	-	-	-	-	-	-	0.27	-	-	-	-
SAR (unitless)	5	5	-	1.84	1.92	4.26%	-	-	-	-	0.794	-	-	-	-	-	-	1.46	-	-	-	-
Antimony	7.5	7.5	0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Arsenic	18	18	0.5	3	3.2	6.45%	4.4	5.2	5.8	3.6	3.1	3.8	3	2.9	3.39%	3.1	2.9	3.8	2.6	3.3	< 0.5	2.9
Barium	390	390	1	178	174	2.27%	212	190	158	184	140	135	139	133	4.41%	159	201	179	140	188	1	156
Beryllium	4	4	0.2	0.6	0.6	0.00%	0.8	0.9	0.5	0.7	0.6	0.6	0.7	0.7	0.00%	0.8	0.9	0.8	0.6	0.6	< 0.2	0.4
Boron (Hot Water Soluble)	1.5	1.5	0.02	0.56	0.5	11.32%	0.56	0.69	0.45	0.55	0.43	0.44	0.41	0.44	7.06%	0.41	0.51	0.43	0.47	0.43	0.43	0.48
Boron (total)	120	120	0.5	10.6	13.8	26.23%	21.2	15.2	16	14.6	9.8	11.5	11.8	9.9	17.51%	11.8	12.8	10.7	13.2	11.5	7.7	14.1
Chromium (VI)	8	8	0.2	< 0.2	< 0.2	<3 x MDL	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<3 x MDL	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Cadmium	1.2	1.2	0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium Chloride	- NA	NA	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
	160	160	-	30	30	0.00%	32	35	19	28	26	29	29	28	3.51%	32	< 0.2	32	26	24	1	22
Chromium, total Cobalt	22	22	1	11	10	9.52%	13	13	7	11	11	12	13	12	8.00%	13	16	12	10	10	< 1	7
Copper	140	140	1	22	59	91.36%	25	23	17	27	20	16	18	17	5.71%	20	17	23	18	22	<1	23
Cyanide, free	0.051	0.051	-		-	91.3070	- 23	- 23	- 17	- 21	-	-	-		5.7170	- 20	- 17	-	-	-	- 1	- 23
Iron	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-
Lead	120	120	5	45	44	2,25%	66	53	135	88	52	56	18	17	5.71%	9	14	34	21	117	< 5	51
Magnesium	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Manganese	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	0.27	0.27	0.005	0.079	0.085	7.32%	0.066	0.084	0.058	0.079	0.123	0.087	0.053	0.063	17.24%	0.043	0.048	0.096	0.05	0.065	0.067	0.131
Molybdenum	6.9	6.9	1	< 1	< 1	<3 x MDL	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<3 x MDL	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Nickel	100	100	1	19	19	0.00%	24	24	14	22	19	20	21	20	4.88%	25	26	24	20	19	< 1	13
Nitrate (N)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrite (N)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorous	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Selenium	2.4	2.4	0.5	0.6	< 0.5	<3 x MDL	0.6	0.8	0.5	0.6	0.6	0.6	0.6	0.6	0.00%	0.8	0.6	0.8	0.5	0.5	< 0.5	< 0.5
Silver Sodium	20	20	0.2	0.2	< 0.2	<3 x MDL	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<3 x MDL	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.4
Sodium Thallium	1.0	1.0	0.1	0.2	0.2	0.00%	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.00%	0.2	0.2	0.2	0.2	0.2	< 0.1	0.2
Tin	1.0	1.0	0.1	0.2	0.2	0.0070	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.0076	0.2	0.2	0.2	0.2	0.2	V U.1	0.2
Titanium	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
Uranium	23	23	0.1	0.5	0.5	0.00%	0.5	0.8	0.4	0.5	0.4	0.5	0.4	0.5	22.22%	0.5	0.6	0.5	0.4	0.4	< 0.1	0.3
Vanadium	86	86	1	36	37	2.74%	43	45	25	37	36	37	38	37	2.67%	42	46	43	33	31	< 1.1	20
Zinc	340	340	3	87	87	0.00%	96	105	69	131	59	54	53	52	1.90%	45	64	58	46	58	< 3	50
Notes:															******							

Jacques Whitford, 2004, "Limited Phase II Environmental Site Assessment, 40 Sir John A. MacDonald, Kingston, Ontario," dated

April 22, 2004, prepared for Canada Lands Company CLC Limited

Jacques Whitford, 2004, "Supplemental Phase II Environmental Site Assessment, Kingston Prison for Women," dated September 9, 2004 SuppPhII

Jacques Whitford, 2005, "Phase III Delineation Environmental Site

Assessment, Kingston Prison for Women," dated January 13, 2005 8Jacques Whitford, 2008, "Final Report: Soil Remediation

Excavation, Former Kingston Prison for Women, 40 Sir John A.
MacDonald Blvd., Kingston, Ontario," dated February 5, 2008,
prepared for Canada Lands Company CLC Limited
Below laboratory RDL (Reportable Detection Limit)

Bold & Highlighted Parameter concentration exceeds MOE Table 3 & 7 Standards Relative Percent Difference calculated as the absolute difference between duplicate results divided by the average expressed in percent.

Not Analyzed/ Not applicable

MOE Table 3 Standards

Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition, All

Types of Property Use

Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Generic Site Condition Standards for Shallow Soils in a Non-Potable Groundwater Condition, All Types of Property Use

Table 5 Summary of Analytical Results for Metals and Inorganics in Soil

Location						TP19-8					TP19-9						TP	19-10			
Sample ID	O. Reg. 153/04 (2011) - Table 3 Residential / Parkland / Institutional Property	Table 7 Residential / Parkland /	Reportable Detection Limit	TP19-8-Centre	TP19-8-North	TP19-8-South	TP19-8-East	TP19-8-West	TP19-9 Centre	TP19-9-East	TP19-9-West	TP19-9-North	TP19-9-South	TP19-10-North	TP19-10-South	Duplicate 5		TP19-10-East	TP19-10-West	TP19-10- Centre	TP19-10- Bottom
Original Report	Use	Use		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
Laboratory				Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	RPD	Caduceon	Caduceon	Caduceon	Caduceon
Laboratory ID				B19-21653-9	B19-21653-10	B19-21653-11	B19-21653-12	B19-21653-13	B19-21653-4	B19-21653-5	B19-21653-6	B19-21653-7	B19-21653-8	B19-21653-24	B19-21653-25	B19-21653-30		B19-21653-26	B19-21653-27	B19-21653-28	B19-21653-28
Depth of Sample (m bgs)	(µg/g)	(µg/g)	(µg/g)	1.5 - 1.7	1.5 - 1.7	1.5 - 1.7	1.5 - 1.7	1.5 - 1.7	1.5			1.5	1.5	0.8	0.8	0.8		0.8	0.8	0.8	1.5
Sample Date				16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19		16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19
Date of Metals Analysis				24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19		24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19
Analytical Report Reference																	1				
No.				B19-21653-29	B19-21653-29	B19-21653-29	B19-21653-29	B19-21653-29	B19-21653-29	B19-21653-29	B19-21653-29	B19-21653-29	B19-21653-29	B19-21653-29	B19-21653-29	B19-21653-29		B19-21653-29	B19-21653-29	B19-21653-29	B19-21653-28
pH (unitless)	Acceptable range: 6-9	Acceptable range: 6-9	-	7.28	-	-	-	-	7.36	-	-	-	-	-	-	-	İ	-	-	7.25	7.35
Conductivity (mS/cm)	0.7	0.7	0.001	0.241	-	-	-	-	0.258	-	-	-	-	-	-	-		-	-		-
SAR (unitless)	5	5	-	0.593	-	-	-	-	1.16	-	-	-	-	-	-	-		-	-	-	-
Antimony	7.5	7.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5	< 0.5
Arsenic	18	18	0.5	3.2	3.7	3.7	3.4	3.5	3	4	3.8	4.2	3.6	2.6	2.9	3.1	6.9%	2.3	2.5	2.4	1.9
Barium	390	390	1	208	225	205	222	233	209	207	216	243	242	232	273	289	5.9%	189	206	196	78
Beryllium	4	4	0.2	0.8	0.9	0.8	1	1	0.8	0.9	0.9	1	1	0.8	0.9	1	11.1%	0.6	0.8	0.8	0.4
Boron (Hot Water Soluble)	1.5	1.5	0.02	0.12	0.15	0.15	0.14	0.16	0.08	0.19	0.12	0.16	0.13	0.11	0.1	0.16	60.0%	0.08	0.1	0.1	0.04
Boron (total)	120 8	120 8	0.5	6.1 < 0.2	2.7	7.8	3.1	2.5	5.2 < 0.2	4.1 < 0.2	3.9 < 0.2	9.5 < 0.2	5.3 < 0.2	8.4 < 0.2	5.5 < 0.2	6 < 0.2	9.1% <3 x MDL	5.1 < 0.2	4.8	4.3 < 0.2	5.9 < 0.2
Chromium (VI) Cadmium	1.2	1.2	0.2	< 0.2	< 0.2 < 0.5	< 0.2 < 0.5	< 0.2 < 0.5	< 0.2 < 0.5	< 0.2	< 0.5	< 0.5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<3 x MDL	< 0.2	< 0.2 < 0.5	< 0.2	< 0.2
Calcium	1.2	1.2	- 0.3	< 0.5	< 0.3	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	- 0.5	- 0.5	<3 X MIDL	< 0.3	- 0.5	< 0.5	< 0.5
Chloride	NA NA	NA NA			-	-	-	-			-	_		-	-		-	+ - :	-		-
Chromium, total	160	160	1	33	34	34	34	37	32	34	32	38	36	38	39	54	38.5%	26	35	34	18
Cobalt	22	22	i	11	12	11	11	14	11	15	13	13	14	10	13	14	7.7%	10	10	10	6
Copper	140	140	1	24	26	34	24	21	23	21	23	27	24	24	29	30	3,4%	21	24	20	13
Cyanide, free	0.051	0.051	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Iron	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Lead	120	120	5	30	35	23	14	25	14	57	28	41	45	7	8	9	<3 x MDL	7	7	9	< 5
Magnesium	-	=	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Manganese	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	0.27	0.27	0.005	0.064	0.079	0.077	0.057	0.062	0.032	0.109	0.071	0.091	0.062	0.022	0.023	0.023	0.0%	0.015	0.025	0.026	0.028
Molybdenum	6.9	6.9	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	2	<3 x MDL	< 1	< 1	< 1	< 1
Nickel	100	100	1	25	25	24	28	43	26	23	24	28	26	27	32	54	68.8%	21	25	26	17
Nitrate (N)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrite (N)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorous Selenium	2.4	2.4	0.5	0.7	0.7	0.7	0.9	0.8	0.7	0.6	0.7	0.7	0.7	0.7	0.9	0.9	- <3 x MDL	0,6	0.7	0.7	< 0.5
Silver	2.4	2.4	0.5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<3 x MDL	< 0.2	< 0.2	< 0.2	< 0.5
Sodium	- 20	- 40	0.2	\ U.Z	~ U.Z	< 0.2	~ U.Z	< 0.2	~ U.Z	~ U.Z	- 0.2	~ U.Z	~ U.Z	~ U.Z	~ U.Z	- 0.2	- S X MIDL	- 0.2	- 0.2	- 0.2	- 0.2
Thallium	1.0	1.0	0.1	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.0%	0.2	0.2	0.2	0.1
Tin	-	-		0.2	- 0.2	- 0.2	- 0.2	- 0.3	0.2	- 0.2	- 0.2	- 0.2	- 0.2	- 0.2	-	-	-	0.2	- 0.2	- 0.2	-
Titanium	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Uranium	23	23	0.1	0.5	0.6	0.5	0.5	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.0%	0.4	0.5	0.5	0.4
Vanadium	86	86	1	41	44	42	45	49	41	49	46	51	50	48	50	52	4.0%	39	45	40	25
Zinc	340	340	3	56	63	62	55	68	52	89	67	78	72	65	69	73	5.8%	46	59	54	26
Notes:					•																

Jacques Whitford, 2004, "Limited Phase II Environmental Site Assessment, 40 Sir John A. MacDonald, Kingston, Ontario," dated

April 22, 2004, prepared for Canada Lands Company CLC Limited

Jacques Whitford, 2004, "Supplemental Phase II Environmental Site Assessment, Kingston Prison for Women," dated September 9, 2004 SuppPhII

Jacques Whitford, 2005, "Phase III Delineation Environmental Site

Assessment, Kingston Prison for Women," dated January 13, 2005 8Jacques Whitford, 2008, "Final Report: Soil Remediation

Excavation, Former Kingston Prison for Women, 40 Sir John A.
MacDonald Blvd., Kingston, Ontario," dated February 5, 2008,
prepared for Canada Lands Company CLC Limited
Below laboratory RDL (Reportable Detection Limit)

Bold & Highlighted Parameter concentration exceeds MOE Table 3 & 7 Standards

Relative Percent Difference calculated as the absolute difference between duplicate results divided by the average expressed in percent.

Not Analyzed/ Not applicable

MOE Table 3 Standards

Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition, All

Types of Property Use

Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Generic Site Condition Standards for Shallow Soils in a Non-Potable Groundwater Condition, All Types of Property Use

Table 5 Summary of Analytical Results for Metals and Inorganics in Soil

Location						TP19-11					TP19-12				TP19-17		TP19-18	TP19-19
Sample ID	O. Reg. 153/04 (2011) · Table 3 Residential / Parkland / Institutional Property		Reportable Detection Limit	TP19-11-North	TP19-11-South	TP19-11-West	TP19-11-East	TP19-11- Centre	TP19-12-North	TP19-12-South	TP19-12- Centre	TP19-12-East	TP19-12-West	TP19-17	Duplicate 4		TP19-18	TP19-19
Original Report	Use	Use		-	-	-	-	-	-	-	-	-	-	-	-		-	-
Laboratory				Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	RPD	Caduceon	Caduceon
Laboratory ID				B19-21653-14	B19-21653-15	B19-21653-16	B19-21653-17	B19-21653-18	B19-21653-19	B19-21653-20	B19-21653-21	B19-21653-22	B19-21653-23	B19-21653-1	B19-21653-31		B19-21653-2	B19-21653-3
Depth of Sample (m bgs)	(µg/g)	(µg/g)	(µg/g)	1.2	1.2	1.2	1.2	1.2	0.8	0.8	0.8	0.8	0.8	2.4 - 2.7	2.4 - 2.7		2	1.5
Sample Date				16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19		16-Jul-19	16-Jul-19
Date of Metals Analysis				24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19	25-Jul-19		24-Jul-19	24-Jul-19
Analytical Report Reference	1																	
No.				B19-21653-29	B19-21653-29	B19-21653-29	B19-21653-29	B19-21653-29	B19-21653-29	B19-21653-29	B19-21653-29	B19-21653-29	B19-21653-29	B19-21653-29	B19-21653-29		B19-21653-29	B19-21653-29
pH (unitless)	Acceptable range: 6-9	Acceptable range: 6-9	-	-	-	-	-	7.33	-	-	7.37	-	-	-	-	-	-	-
Conductivity (mS/cm)	0.7	0.7	0.001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SAR (unitless)	5	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Antimony	7.5	7.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5
Arsenic	18	18	0.5	3.3	4.2	6.1	3.4	3	2.6	1.9	3.5	3.4	3.2	3.1	2.1	38.46%	4.9	1.8
Barium	390	390	1	516	330	340	401	314	170	76	229	320	289	131	96	30.84%	237	138
Beryllium	4	4	0.2	1.2	1	1.1	1.1	0.9	0.8	0.3	0.7	0.9	0.8	0.6	0.4	40.00%	0.9	0.8
Boron (Hot Water Soluble)	1.5	1.5	0.02	0.2	0.21	0.25	0.13	0.14	0.2	0.14	0.19	0.15	0.2	0.09	0.11	20.00%	0.21	0.3
Boron (total)	120	120	0.5	1.4	2.4	4.6	4.4	5.6	6.5	4.4	12.9	5.9	6.8	5.2	5.3	1.90%	7	6.3
Chromium (VI)	8	8	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<3 x MDL	< 0.2	< 0.2
Cadmium	1.2	1.2	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5
Calcium	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloride	NA	NA 160	-		-	- 45	-	40	-	-	-	-	-	-	-	24.150/	-	-
Chromium, total Cobalt	160 22	160 22	1	53 18	45 16	45 17	50 19	40 14	33 12	6	29 10	46 14	34 12	24	17 7	34.15% 25.00%	36 14	24 12
	140	140	1	37	33	32	37	30	18	13	22	30	26	22	13	51.43%	36	9
Copper Cyanide, free	0.051	0.051	-	37	33	- 32	-	-	18	- 13		-	20	- 22	- 13	31.43%	- 30	-
Iron	0.031	0.031				-	-	_		-							-	
Lead	120	120	5	10	25	79	14	15	27	35	65	11	21	39	12	105.88%	256	16
Magnesium	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Manganese	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	0.27	0.27	0.005	0.019	0.038	0.058	0.017	0.022	0.051	0.031	0.044	0.02	0.04	0.086	0.037	79.67%	0.298	0.055
Molybdenum	6.9	6.9	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<3 x MDL	< 1	< 1
Nickel	100	100	1	43	32	34	42	32	23	10	23	38	29	17	14	19.35%	26	20
Nitrate (N)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrite (N)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorous	-	-	ı	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Selenium	2.4	2.4	0.5	0.9	0.5	0.9	0.7	0.7	< 0.5	< 0.5	0.6	0.7	0.6	0.5	< 0.5	<3 x MDL	0.8	0.6
Silver	20	20	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<3 x MDL	< 0.2	< 0.2
Sodium	-	-	- 0.1	-	- 0.2	-	-	-	-	-	-	-	- 0.2	-	-	-	-	-
Thallium	1.0	1.0	0.1	0.4	0.3	0.3	0.4	0.3	0.2	0.1	0.2	0.3	0.3	0.2	0.1	66.67%	0.2	0.1
Titomiyaa	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Titanium Uranium	23	23	0.1	0.6	0.5	0.6	0.6	0.5	0.5	0.4	0.5	0.5	0.5	0.5	0.4	22.22%	0.5	0.3
Vanadium	23 86	23 86	0.1	68	56	60	67	0.5 55	51	23	41	0.5 57	0.5 46	30	24	22.22%	46	25
Zinc	340	340	2	101	153	98	104	94	76	45	103	137	67	53	29	58.54%	109	48
Notes:	340	340	3	101	133	98	104	94	/0	43	103	13/	0/	33	29	38.34%	109	48

Jacques Whitford, 2004, "Limited Phase II Environmental Site Assessment, 40 Sir John A. MacDonald, Kingston, Ontario," dated

April 22, 2004, prepared for Canada Lands Company CLC Limited

Jacques Whitford, 2004, "Supplemental Phase II Environmental Site Assessment, Kingston Prison for Women," dated September 9, 2004 SuppPhII

Jacques Whitford, 2005, "Phase III Delineation Environmental Site

Assessment, Kingston Prison for Women," dated January 13, 2005 8Jacques Whitford, 2008, "Final Report: Soil Remediation

Excavation, Former Kingston Prison for Women, 40 Sir John A.
MacDonald Blvd., Kingston, Ontario," dated February 5, 2008,
prepared for Canada Lands Company CLC Limited
Below laboratory RDL (Reportable Detection Limit)

Bold & Highlighted Parameter concentration exceeds MOE Table 3 & 7 Standards

Relative Percent Difference calculated as the absolute difference between duplicate results divided by the average expressed in percent.

Not Analyzed/ Not applicable

MOE Table 3 Standards

Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition, All

Types of Property Use

Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act" (2011), Generic Site Condition Standards for Shallow Soils in a Non-Potable Groundwater Condition, All Types of Property Use

Table 6 Summary of Analytical Results for PAHs in Soil

Location	Q Day 459/04	Q. Davi 450/04	Donostable	BH04-1,2,3 COMP.	BH04-4,5,7 COMP.	BH04-8,9,10 COMP.	Fill Composite #1 (BH04-13 & BH04-14)	Fill Composite #2 (BH04-15 & BH04-16)	мм	/19-3	MW19-4		TP19-1		TP19-6	TP19-7	TP19-8	TP19-9
Sample ID	O. Reg. 153/04 (2011) - Table 3 Residential /	O. Reg. 153/04 (2011) - Table 7 Residential /	Reportable Detection Limit	BH04-1,2,3 COMP.	BH04-4,5,7 COMP.	BH04-8,9,10 COMP.	Fill Composite #1 (BH04-13 & BH04-14)	Fill Composite #2 (BH04-15 & BH04-16)	MW19-3 9"-3'4"	MW19-3 20'-21'	MW19-4 2'-3'8"	TP19-1 (0-1m)	Duplicate-3		TP19-6 (2m)	TP19-7 (2m)	TP19-8 Centre	TP19-9 Centre
Original Report	Parkland / Institutional	Parkland / Institutional		Ltd Phll	Ltd Phll	Ltd Phll	Ph III	Ph III	-	-	-	-	-		-	-	-	-
Laboratory	Property Use	Property Use		Paracel	Paracel	Paracel	Paracel & PSC	Paracel & PSC	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon		Caduceon	Caduceon	Caduceon	Caduceon
Laboratory ID	1 Topolty Coc	Troporty coc		-	-	-	-	-	B19-18946-3	B19-18946-4	B19-18946-5	B19-21395-14	B19-21395-19	RPD	B19-21395-2	B19-21395-3	B19-21653-9	B19-21653-4
Depth of Sample (mbgs)	1			-	-	-	-	-	0.23 - 1.02	6.1 - 6.40	0.61 - 1.12	1	1		2	2	1.5 - 1.7	1.5
Sample Date				5-Feb-04	5-Feb-04	5-Feb-04	5-Nov-04	5-Nov-04	25-Jun-19	25-Jun-19	25-Jun-19	15-Jul-19	15-Jul-19		15-Jul-19	15-Jul-19	16-Jul-19	16-Jul-19
Date of Analysis	(µg/g)	(µg/g)	(µg/g)	=	-	-	-	-	27-Jun-19	27-Jun-19	27-Jun-19	22-Jul-19	22-Jul-19		22-Jul-19	22-Jul-19	22-Jul-19	24-Jul-19
Analytical Report Reference No.				-	-	-	-	-	B19-18946	B19-18946	B19-18946	B19-21395 (iii)	B19-21395 (iii)		B19-21395 (iii)	B19-21395 (iii)	B19-21653 (ii)	B19-21653 (ii)
Acenaphthene	7.9	7.9	0.05	< 0.020	0.06	< 0.040	<1.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<3 x MDL	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	0.15	0.15	0.05	< 0.020	< 0.020	< 0.040	<1.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<3 x MDL	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	0.67	0.67	0.05	< 0.020	0.06	< 0.040	<1.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<3 x MDL	< 0.05	< 0.05	< 0.05	< 0.05
Benzo[a]anthracene	0.5	0.5	0.05	< 0.020	0.10	< 0.040	<1.0	< 0.05	< 0.05	< 0.05	< 0.05	0.1	0.13	26.1%	< 0.05	< 0.05	< 0.05	< 0.05
Benzo[a]pyrene	0.3	0.3	0.05	< 0.020	0.12	< 0.040	<1.0	< 0.05	< 0.05	< 0.05	< 0.05	0.11	0.13	16.7%	< 0.05	< 0.05	< 0.05	< 0.05
Benzo[b]fluoranthene	0.78	0.78	0.05	< 0.020	0.10	< 0.040	<1.0	< 0.05	< 0.05	< 0.05	< 0.05	0.16	0.17	6.1%	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b+k)fluoranthene	-	-	-	-	-	-	-	-	0.06	< 0.05	< 0.05	0.22	0.24	8.7%	< 0.05	< 0.05	< 0.05	< 0.05
Benzo[g,h,i]perylene	6.6	6.6	0.05	< 0.020	0.08	< 0.040	<1.0	< 0.05	< 0.05	< 0.05	< 0.05	0.07	0.08	13.3%	< 0.05	< 0.05	< 0.05	< 0.05
Benzo[k]fluoranthene	0.78	0.78	0.05	< 0.020	0.04	< 0.040	<1.0	< 0.05	< 0.05	< 0.05	< 0.05	0.06	0.07	15.4%	< 0.05	< 0.05	< 0.05	< 0.05
Biphenyl	0.31	0.31	-	< 0.020	0.02	< 0.040	-	-	-	-	-	-	-	-	-	-	-	-
Chrysene	7	7	0.05	< 0.020	0.16	< 0.040	<1.0	< 0.05	< 0.05	< 0.05	< 0.05	0.12	0.15	22.2%	< 0.05	< 0.05	< 0.05	< 0.05
Dibenzo[a,h]anthracene	0.1	0.1	0.05	< 0.020	0.02	< 0.040	<1.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<3 x MDL	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	0.69	0.69	0.05	< 0.020	0.20	< 0.040	<1.0	< 0.05	0.06	< 0.05	< 0.05	0.24	0.31	25.5%	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	62	62	0.05	< 0.020	0.02	< 0.040	<1.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<3 x MDL	< 0.05	< 0.05	< 0.05	< 0.05
Indeno[1,2,3-cd]pyrene	0.38	0.38	0.05	< 0.020	0.06	< 0.040	<1.0	< 0.05	< 0.05	< 0.05	< 0.05	0.09	0.1	10.5%	< 0.05	< 0.05	< 0.05	< 0.05
1-Methylnaphthalene	0.99	0.99	0.05	< 0.020	0.42	< 0.040	<1.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<3 x MDL	< 0.05	< 0.05	< 0.05	< 0.05
2-Methylnaphthalene			0.05	< 0.020	0.44	< 0.040	<1.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<3 x MDL	< 0.05	< 0.05	< 0.05	< 0.05
Methylnaphthalene (1&2)	0.99	0.99	0.05	-	-	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<3 x MDL	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	0.6	0.6	0.05	< 0.020	0.3	< 0.040	<1.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<3 x MDL	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	6.2	6.2	0.05	< 0.020	0.30	< 0.040	<1.0	< 0.05	< 0.05	< 0.05	< 0.05	0.09	0.11	20.0%	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	78	78	0.05	< 0.020	0.18	< 0.040	<1.0	< 0.05	< 0.05	< 0.05	< 0.05	0.21	0.26	21.3%	< 0.05	< 0.05	< 0.05	< 0.05

Concentrations Reported in µg/g dry weight

SuppPhII

Ltd PhII Jacques Whitford, 2004, "Limited Phase II Environmental Site

Assessment, 40 Sir John A. MacDonald, Kingston, Ontario," dated April 22, 2004, prepared for Canada Lands Company CLC Limited

Jacques Whitford, 2004, "Supplemental Phase II Environmental Site Assessment, Kingston Prison for Women," dated September 9, 2004

Jacques Whitford, 2005, "Phase III Delineation Environmental Site Ph III

Assessment, Kingston Prison for Women," dated January 13, 2005

Jacques Whitford, 2008, "Final Report: Soil Remediation Remediation Excavation, Former Kingston Prison for Women, 40 Sir John A.

MacDonald Blvd., Kingston, Ontario," dated February 5, 2008,

prepared for Canada Lands Company CLC Limited

Below laboratory RDL (Reportable Detection Limit)

Bold & Highlighted Parameter concentration exceeds MOE Table 3 & 7 Standards Reportable Detection Limit exceeds MOE Table 3 and MOE Table 7

Standards

Relative Percent Difference calculated as the absolute difference RPD between duplicate results divided by the average expressed in

Not Calculated

Not Analyzed/ Not applicable MOE Table 3 Standards

Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act" (2011), Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition, All

Types of Property Use

Ontario Ministry of the Environment's (MOE) "Soil, Ground Water

and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Generic Site Condition Standards for Shallow Soils in a Non-Potable Groundwater

Condition, All Types of Property Use

MOE Table 7 Standards

Table 6 Summary of Analytical Results for PAHs in Soil

Location				TP1	9-10	TP19-11	TP19-12
Sample ID	O. Reg. 153/04 (2011) - Table 3 Residential /	O. Reg. 153/04 (2011) - Table 7 Residential /	Reportable Detection Limit	TP19-10- Centre	TP19-10- Bottom	TP19-11- Centre	TP19-12 Centre
Original Report	Parkland /	Parkland /		-	-	-	=
Laboratory	Institutional Property Use	Institutional Property Use		Caduceon	Caduceon	Caduceon	Caduceon
Laboratory ID	- Froperty Use	Froperty Use		B19-21653-28	B19-21653-28	B19-21653-18	B19-21653-21
Depth of Sample (mbgs)				0.8	1.5	1.2	0.8
Sample Date	†			16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19
Date of Analysis	(µg/g)	(µg/g)	(µg/g)	24-Jul-19	24-Jul-19	24-Jul-19	24-Jul-19
Analytical Report Reference No.				B19-21653 (ii)	B19-21653 (ii)	B19-21653 (ii)	B19-21653 (ii)
Acenaphthene	7.9	7.9	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	0.15	0.15	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	0.67	0.67	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo[a]anthracene	0.5	0.5	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo[a]pyrene	0.3	0.3	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo[b]fluoranthene	0.78	0.78	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b+k)fluoranthene	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05
Benzo[g,h,i]perylene	6.6	6.6	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo[k]fluoranthene	0.78	0.78	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Biphenyl	0.31	0.31	-	-	-	-	-
Chrysene	7	7	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenzo[a,h]anthracene	0.1	0.1	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	0.69	0.69	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	62	62	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno[1,2,3-cd]pyrene	0.38	0.38	0.05	< 0.05	< 0.05	< 0.05	< 0.05
1-Methylnaphthalene	0.99	0.99	0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Methylnaphthalene	0.33	0.33	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methylnaphthalene (1&2)	0.99	0.99	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	0.6	0.6	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	6.2	6.2	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	78	78	0.05	< 0.05	< 0.05	< 0.05	< 0.05

40 Sir John A. MacDonald Boulevard, Kingston, Ontario

SuppPhII

Ph III

Ltd PhII Jacques Whitford, 2004, "Limited Phase II Environmental Site

Assessment, 40 Sir John A. MacDonald, Kingston, Ontario," dated April 22, 2004, prepared for Canada Lands Company CLC Limited

Jacques Whitford, 2004, "Supplemental Phase II Environmental Site Assessment, Kingston Prison for Women," dated September 9, 2004

Jacques Whitford, 2005, "Phase III Delineation Environmental Site

Assessment, Kingston Prison for Women," dated January 13, 2005

Jacques Whitford, 2008, "Final Report: Soil Remediation Remediation Excavation, Former Kingston Prison for Women, 40 Sir John A.

MacDonald Blvd., Kingston, Ontario," dated February 5, 2008,

prepared for Canada Lands Company CLC Limited

Below laboratory RDL (Reportable Detection Limit)

Bold & Highlighted Parameter concentration exceeds MOE Table 3 & 7 Standards Reportable Detection Limit exceeds MOE Table 3 and MOE Table 7

Standards

Relative Percent Difference calculated as the absolute difference RPD between duplicate results divided by the average expressed in

Not Calculated

Not Analyzed/ Not applicable MOE Table 3 Standards

Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act" (2011), Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition, All

Types of Property Use

MOE Table 7 Standards Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act" (2011), Generic Site Condition Standards for Shallow Soils in a Non-Potable Groundwater

Condition, All Types of Property Use

R18982503001tbls.xlsx

Table 7 Summary of Analytical Results for VOCs in Soil

Sample Location				MW	/19-2	MW	19-3	MW19-4		TP19-2	
Sample ID	O. Reg. 153/04 (2011) - Table 3	O. Reg. 153/04 (2011) - Table 7	Reportable Detection	MW19-2 4'-6'9"	MW19-2 7'3"-10'	MW19-3 9"-3'4"	MW19-3 6'6"-8'	MW19-4 2'-3'8"	TP19-2 (0.8)	Soil Duplicate	
Laboratory	Residential /	Residential /	Limit	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	1
Laboratory ID	Parkland /	Parkland /		B19-18946-2	B19-20317-2	B19-20294-1	B19-20317-3	B19-18946-2	B19-21395-1	B19-21395-4	1
Depth of Sample (mbgs)	Institutional	Institutional		1.22 - 2.06	2.21 - 3.05	0.23 - 1.02	1.98 - 2.44	0.61 - 1.12	0.8	0.8	RPD
Sample Date	Property Use	Property Use		25-Jun-19	25-Jun-19	25-Jun-19	25-Jun-19	25-Jun-19	15-Jul-19	15-Jul-19	KFD
<u> </u>											4
Date of Analysis		, , ,	l , , ,	27-Jun-19	10-Jul-19	27-Jun-19	10-Jul-19	27-Jun-19	17-Jul-19	17-Jul-19	4
Analytical Report Reference No.	(µg/g)	(µg/g)	(µg/g)	B19-18946	B19-20317	B19-20294	B19-20317	B19-18946	B19-21395 (ii)	B19-21395 (ii)	
Acetone	16	16	0.5	< 0.5	< 0.5	2.7	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL
Benzene	0.21	0.21	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<3 x MDL
Bromodichloromethane	13	13	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<3 x MDL
Bromoform	0.27	0.27	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<3 x MDL
Bromomethane	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<3 x MDL
Carbon Tetrachloride	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<3 x MDL
Chlorobenzene	2.4	2.4	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<3 x MDL
Chloroform	0.05	0.05	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<3 x MDL
Dibromochloromethane	9.4	9.4	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<3 x MDL
Dichlorodifluoromethane	16	16	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<3 x MDL
1,2-Dichlorobenzene	3.4	3.4	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<3 x MDL
1,3-Dichlorobenzene	4.8	4.8	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<3 x MDL
1,4-Dichlorobenzene	0.083	0.083	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<3 x MDL
1,1-Dichloroethane	3.5	3.5	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<3 x MDL
1,2-Dichloroethane	0.05	0.05	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<3 x MDL
1,1-Dichloroethylene	0.05	0.05	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<3 x MDL
cis-1,2-Dichloroethylene	3.4	3.4	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<3 x MDL
trans-1,2-Dichloroethylene	0.084	0.084	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<3 x MDL
1,2-Dichloropropane	0.05	0.05	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<3 x MDL
cis-1,3-Dichloropropylene	-	-	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<3 x MDL
trans-1,3-Dichloropropylene	-		0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<3 x MDL
1,3-Dichloropropene, total	0.05	0.05	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<3 x MDL
Ethylbenzene	2	2	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<3 x MDL
Ethylene dibromide (dibromoethane, 1,2-)	0.05	0.05	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<3 x MDL
Hexane	2.8	2.8	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<3 x MDL
Methyl Ethyl Ketone (2-Butanone)	16	16	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL
Methyl Isobutyl Ketone	1.7	1.7	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL
Methyl tert-butyl ether	0.75	0.75	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<3 x MDL
Methylene Chloride (Dichloromethane)	0.1	0.1	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<3 x MDL
Styrene	0.7	0.7	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<3 x MDL
1,1,1,2-Tetrachloroethane	0.058	0.058	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<3 x MDL
1,1,2,2-Tetrachloroethane	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<3 x MDL
Tetrachloroethylene	0.28	0.28	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<3 x MDL
Toluene	2.3	2.3	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<3 x MDL
1,1,1-Trichloroethane	0.38	0.38	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<3 x MDL
1,1,2-Trichloroethane	0.05	0.05	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<3 x MDL
Trichloroethylene	0.061	0.061	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<3 x MDL
Trichlorofluoromethane	4	4	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<3 x MDL
Vinyl Chloride	0.02	0.02	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<3 x MDL
m/p-Xylene	-	-	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<3 x MDL
o-Xylene	- 2.1	- 2.1	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<3 x MDL
Xylenes, total	3.1	3.1	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<3 x MDL

Concentrations Reported in µg/g dry weight

Below laboratory RDL

Parameter concentration exceeds MOE Table 3 & 7 Standards Bold & Highlighted Relative Percent Difference calculated as the absolute difference between duplicate results divided by the average expressed in percent.

Not Calculated

MOE Table 3 Standards

Not Analyzed/ Not applicable
Ontario Ministry of the Environment's (MOE) "Soil, Ground Water
and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition, All

Types of Property Use

Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Generic Site Condition Standards for Shallow Soils in a Non-Potable Groundwater Condition, All Types of Property Use

MOE Table 7 Standards

Table 8 Summary of Analytical Results for PHCs and BTEX in Groundwater

Sampling Location				MW04-1	MW04-03		MW04-4		MW04-5		MW04-6		MW19-1		MW19-3			MW19-4		MW19-6
Sample ID	O. Reg. 153/04	O. Reg. 153/04	Reportable	MW04-1	MW04-03	MW04-4	DUPLICATE MW04-4		MW04-5	MW04-6	MW04-6	MW04-6	MW19-1	MW19-3	Duplicate		MW19-4	MW19-4	MW19-4	MW19-6
Laboratory	(2011) - Table 3 Residential /	(2011) - Table 7 Residential /	Detection	PSC	PSC	PSC	PSC		PSC	PSC	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon		Caduceon	Caduceon	Caduceon	Caduceon
Laboratory ID	Parkland /	Parkland /	Limit	-	-	-	-		-	-	B19-21399-2	B19-39978-1	B19-21399-3	B19-21399-1	B19-21399-7		B19-21399-4	B19-23868-1	B19-38094-1	B19-21399-5
Sample Date	Institutional	Institutional		16-Aug-04	16-Aug-04	16-Aug-04	16-Aug-04	RPD	16-Aug-04	16-Aug-04	12-Jul-19	11-Dec-19	12-Jul-19	12-Jul-19	12-Jul-19	RPD	12-Jul-19	02-Aug-19	25-Nov-19	12-Jul-19
Date of F1 Analysis	Property Use	Property Use		-	-	-	-		-	-	19-Jul-19	13-Dec-19	19-Jul-19	19-Jul-19	19-Jul-19		19-Jul-19	08-Aug-19	27-Nov-19	19-Jul-19
Date of F2/F3/F4 Analysis	(µg/L)	(µg/L)	(µg/L)	-	-	-	-		-	-	16-Jul-19	13-Dec-19	16-Jul-19	16-Jul-19	16-Jul-19		16-Jul-19	07-Aug-19	26-Nov-19	16-Jul-19
Analytical Report Reference No.	(µg/L)	(μg/L)		-	-	-	-		-	-	B19-21399	B19-39978	B19-21399	B19-21399	B19-21399		B19-21399	B19-23868	B19-38094	B19-21399
Benzene	44	0.5	0.2	< 0.20	< 0.20	< 0.20	< 0.20	NC	< 0.20	< 0.20	-	-	-	-	-	-	-	< 0.5	-	-
Ethylbenzene	2300	54	0.2	0.72	0.49	0.35	< 0.20	NC	1.19	0.59	-	-	-	-	-	-	-	< 0.5	-	-
Toluene	18000	320	0.2	< 0.20	0.44	< 0.20	< 0.20	NC	< 0.20	< 0.20	-	-	-	-	-	-	-	< 0.5	-	-
Xylenes, total	4200	72	0.6	< 0.60	0.62	< 0.60	< 0.60	NC	1.12	< 0.60	-	-	-	-	-	-	-	< 1.1	-	-
F1 PHCs (C6-C10)	750	420	50	<100	<100	<100	<100	NC	<100	<100	< 50	< 50	< 50	< 50	< 50	<3 x MDL	< 50	< 50	< 50	-
F2 PHCs (C10-C16)	150	150	50	<100	<100	<100	<100	NC	<100	<100	< 50	< 50	< 50	< 50	< 50	<3 x MDL	< 50	< 50	< 50	< 50
F3 PHCs (C16-C34)	500	500	400	<100	<100	131	233	56%	<100	<u>672</u>	< 400	< 400	< 400	< 400	< 400	<3 x MDL	1300	< 400	< 400	< 400
F4 PHCs (C34-C50)	500	500	400	<100	<100	130	209	47%	<100	470	< 400	< 400	< 400	< 400	< 400	<3 x MDL	< 400	< 400	< 400	< 400

Concentrations Reported in µg/L

Below laboratory RDL (Reportable Detection Limit) Parameter concentration exceeds MOE Table 3 Standards Bold & Shaded Parameter concentration exceeds MOE Table 7 Standards

Bold, Shaded, & Underlined N/V No Value

Not Analyzed MOE Table 3 Standards Ontario Ministry of the Environment's (MOE) "Soil, Ground Water

and Sediment Standards for Use Under Part XV.1 of the
Environmental Protection Act" (2011), Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition, All

Types of Property Use

Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the MOE Table 7 Standards

Environmental Protection Act" (2011), Generic Site Condition Standards for Shallow Soils in a Non-Potable Groundwater

Condition, All Types of Property Use

Table 9 Summary of Analytical Results for Metals in Groundwater

Sample Location				MW04-1	MW04-03		MW04-4		MV	V04-5	MW04-6	MW19-1		MW19-3		MW19-4	MW19-6
Sample ID	(2011) - Table 3	` '	Reportable Detection	MW04-1	MW04-03	MW04-4	DUPLICATE MW04-4		MW04-5	MW4-05	MW04-6	MW19-1	MW19-3	Duplicate		MW19-4	MW19-6
Laboratory	Residential /	Residential / Parkland /	Limit	PSC	PSC	PSC	PSC		PSC	Caduceon	PSC	Caduceon	Caduceon	Caduceon]	Caduceon	Caduceon
Laboratory ID	Parkland / Institutional	Institutional		-	-	-	-	RPD	-	B19-21399-6	-	B19-21399-3	B19-21399-1	B19-21399-7	RPD	B19-21399-4	B19-21399-5
Sample Date	Property Use	Property Use		16-Aug-04	16-Aug-04	16-Aug-04	16-Aug-04		16-Aug-04	12-Jul-19	16-Aug-04	12-Jul-19	12-Jul-19	12-Jul-19	1	12-Jul-19	12-Jul-19
Date of Metals Analysis	(((I.)	(/1.)	-	-	-	-		-	17-Jul-19	-	17-Jul-19	17-Jul-19	17-Jul-19	1	17-Jul-19	17-Jul-19
Analytical Report Reference No.	(µg/L)	(µg/L)	(µg/L)	-	-	-	-		-	B19-21399	-	B19-21399	B19-21399	B19-21399	1	B19-21399	B19-21399
Electrical Conductivity (µS/cm)	N/A	N/A	1	-	-	-	-	-	721	629	-	1220	-	-	-	-	1440
Chloride	2300000	1800000	0.5	-	1	-	-	-	-	3700	-	142000	117000	116000	0.86%	25700	239000
Antimony	20000	16000	0.1	< 0.0005	0.0013	0.0007	< 0.0005	NC	0.0013	-	< 0.0005	< 0.1	< 0.1	< 0.1	<3 x MDL	1.5	0.3
Arsenic	1900	1500	0.1	< 0.002	0.003	< 0.002	< 0.002	NC	< 0.002	-	< 0.002	< 0.1	< 0.1	< 0.1	<3 x MDL	0.4	0.3
Barium	29000	23000	1	0.128	0.049	0.066	0.046	36%	0.093	-	0.104	150	119	121	1.67%	90	105
Beryllium	67	53	0.1	< 0.001	< 0.001	< 0.001	< 0.001	NC	< 0.001	-	< 0.001	< 0.1	< 0.1	< 0.1	<3 x MDL	< 0.1	< 0.1
Bismuth	-	-	-	< 0.001	< 0.001	< 0.001	< 0.001	NC	< 0.001	-	< 0.001	-	-	-	-	-	-
Boron	45000	36000	5	0.039	0.231	0.231	0.197	16%	0.117	-	0.061	44	120	118	1.68%	166	139
Cadmium	2.7	2.1	0.015	< 0.0001	< 0.0001	< 0.0001	< 0.0001	NC	< 0.0001	-	< 0.0001	< 0.015	< 0.015	< 0.015	<3 x MDL	< 0.015	< 0.015
Calcium	-	-	-	118	67.4	91.8	89.9	2%	78.3	-	136	-	-	-	-	-	-
Chromium	810	640	2	< 0.005	< 0.005	< 0.005	< 0.005	NC	< 0.005	-	< 0.005	< 2	< 2	< 2	<3 x MDL	< 2	< 2
Chromium (VI)	140	110	10	-	-	-	-	-	-	-	-	< 10	< 10	< 10	<3 x MDL	< 10	< 10
Cobalt	66	52	0.1	0.0026	0.0028	0.0038	0.0050	27%	0.0007	-	0.0031	0.3	0.2	0.2	0.00%	0.5	1.6
Copper	87	69	2	0.0009	0.0037	0.0031	0.0034	9%	0.0028	-	0.0023	< 2	< 2	< 2	<3 x MDL	< 2	< 2
Iron	-	-	0.03	< 0.03	0.04	< 0.03	< 0.03	NC	0.04	-	0.05	-	-	-	-	-	-
Lead	25	20	0.02	0.0008	< 0.0005	< 0.0005	0.0017	NC	0.0009	-	0.0008	0.02	< 0.02	< 0.02	<3 x MDL	0.06	0.06
Magnesium	-	-	0.05	23.5	18.7	26.2	26.4	1%	14.8	-	30.2	-	-	-	-	-	-
Manganese	-	-	0.005	0.408	0.024	0.031	0.009	110%	0.076	-	0.191	-	-	-	-	-	-
Mercury	0.29	0.1	0.02	-	-	-	-	-	-	-	-	0.05	< 0.02	< 0.02	<3 x MDL	< 0.02	0.04
Molybdenum	9200	7300	0.1	0.011	0.098	0.043	0.031	32%	0.100	=	0.269	0.7	1	1	0.00%	3.1	3
Nickel	490	390	0.2	0.004	0.005	0.005	0.004	22%	0.005	-	0.009	1.9	1.3	1.3	0.00%	2.2	4.9
Phosphorus	-	-	0.05	< 0.05	< 0.05	< 0.05	0.06	NC	< 0.05	-	< 0.05	-	-	-	-	-	-
Potassium	-	-	0.1	2.2	24.0	28.4	26.8	6%	11.5	-	7.5	-	-	-	-	-	-
Selenium	63	50	1	< 0.002	0.003	0.003	0.003	0%	< 0.002	-	0.004	2	1	1	0.00%	< 1	2
Silver	1.5	1.2	0.1	< 0.0001	< 0.0001	< 0.0001	< 0.0001	NC	< 0.0001	-	< 0.0001	< 0.1	< 0.1	< 0.1	<3 x MDL	< 0.1	< 0.1
Sodium	2300000	1800000	200	66.8	278	298	302	1%	82.3	-	8.6	86700	85400	84500	1.06%	25000	77700
Strontium	-	-	0.001	1.56	1.48	1.81	2.26	22%	5.05	-	7.56	-	-	-	-	-	-
Thallium	510	400	0.05	< 0.00005	0.00009	0.00010	0.00006	50%	0.00009	-	< 0.00005	< 0.05	< 0.05	< 0.05	<3 x MDL	< 0.05	< 0.05
Tin	-	-	0.001	0.001	< 0.001	< 0.001	< 0.001	NC	< 0.001	-	< 0.001	-	-	-	-	-	-
Titanium	-	-	0.005	< 0.005	< 0.005	< 0.005	< 0.005	NC	< 0.005	-	< 0.005	-	-	-	-	-	-
Uranium	420	330	0.05	0.0012	0.0027	0.0015	0.0012	22%	0.0031	-	0.0014	0.63	0.72	0.68	5.71%	0.57	1.27
Vanadium	250	200	5	0.0009	0.0009	0.0009	0.0015	50%	0.0005	-	0.0009	< 5	< 5	< 5	<3 x MDL	< 5	< 5
Zinc	1100	890	5	0.008	0.0012	< 0.005	0.014	NC	0.009	-	0.035	6	< 5	< 5	<3 x MDL	6	5

Notes:

Concentrations Reported in µg/L

Below laboratory RDL (Reportable Detection Limit)

Parameter concentration exceeds MOE Table 3 Standards

Parameter concentration exceeds MOE Table 7 Standards

N/V

No Value

Not Analyzed

MOE Table 3 Standards

Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition, All Types of Property Use

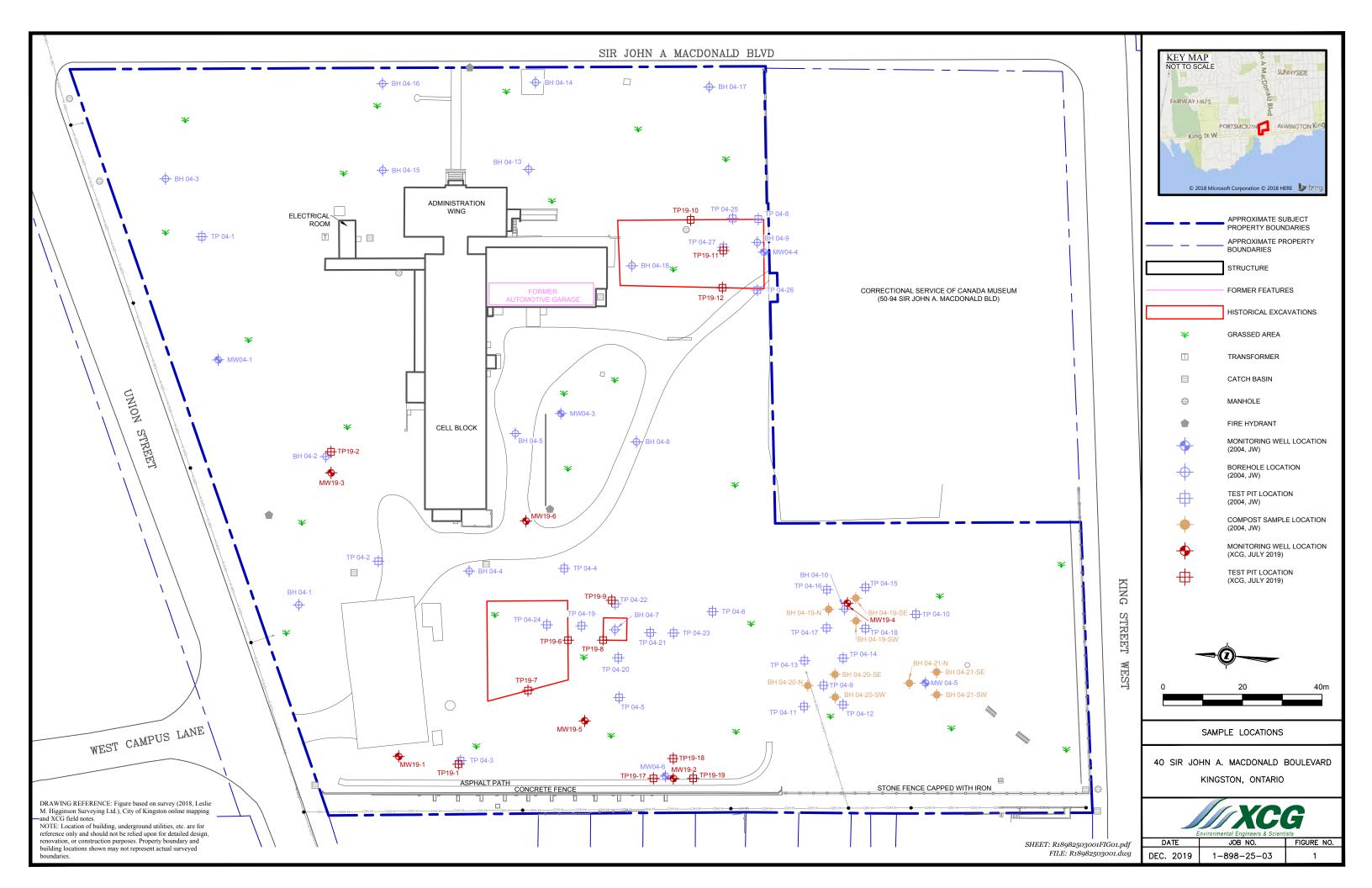
MOE Table 7 Standards
Ontario Ministry of the Environment's (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (2011), Generic Site Condition Standards for Shallow Soils in a Non-Potable Groundwater Condition, All Types of Property Use

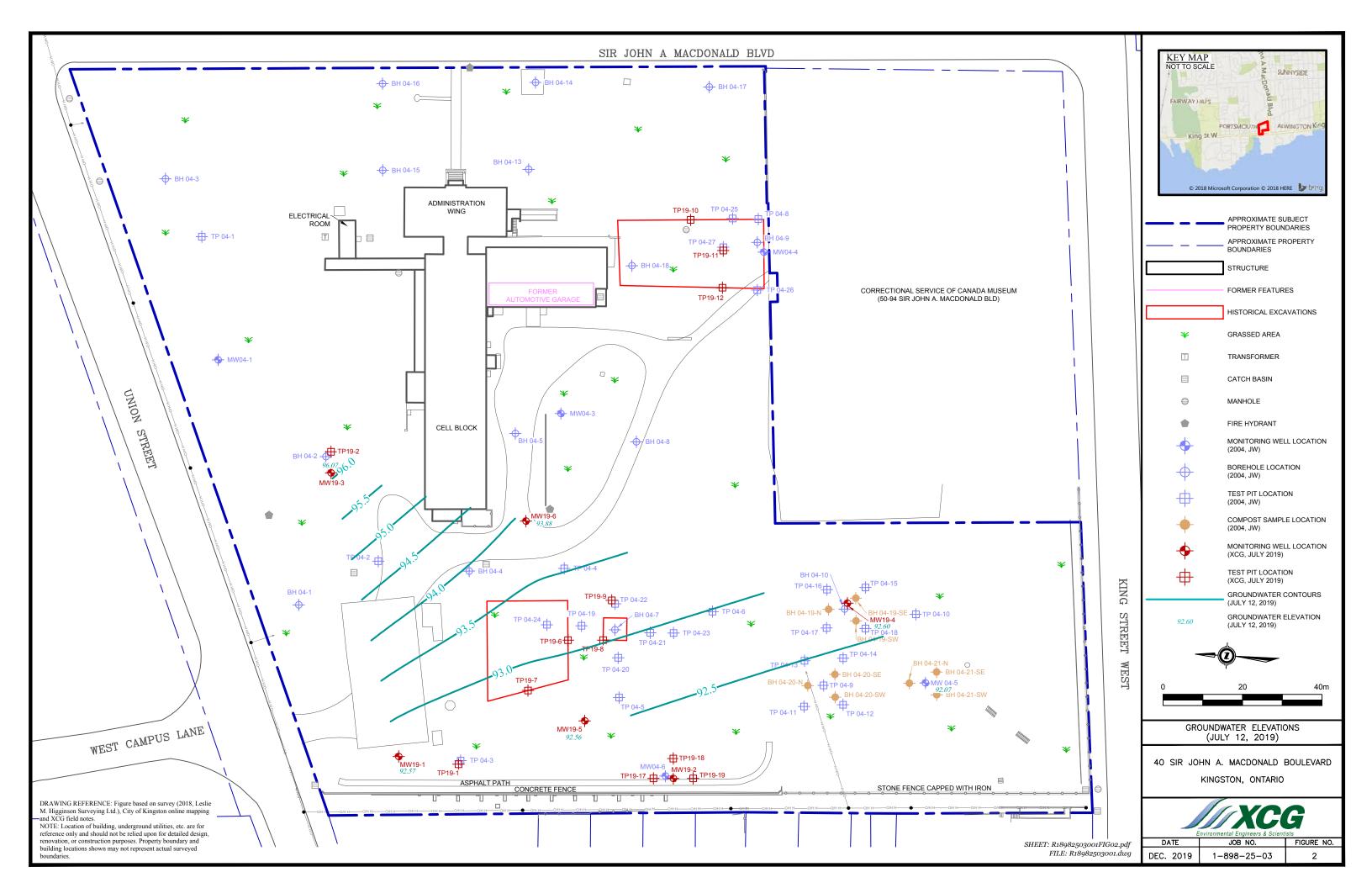
Table 10 Summary of Analytical Results for VOCs in Groundwater

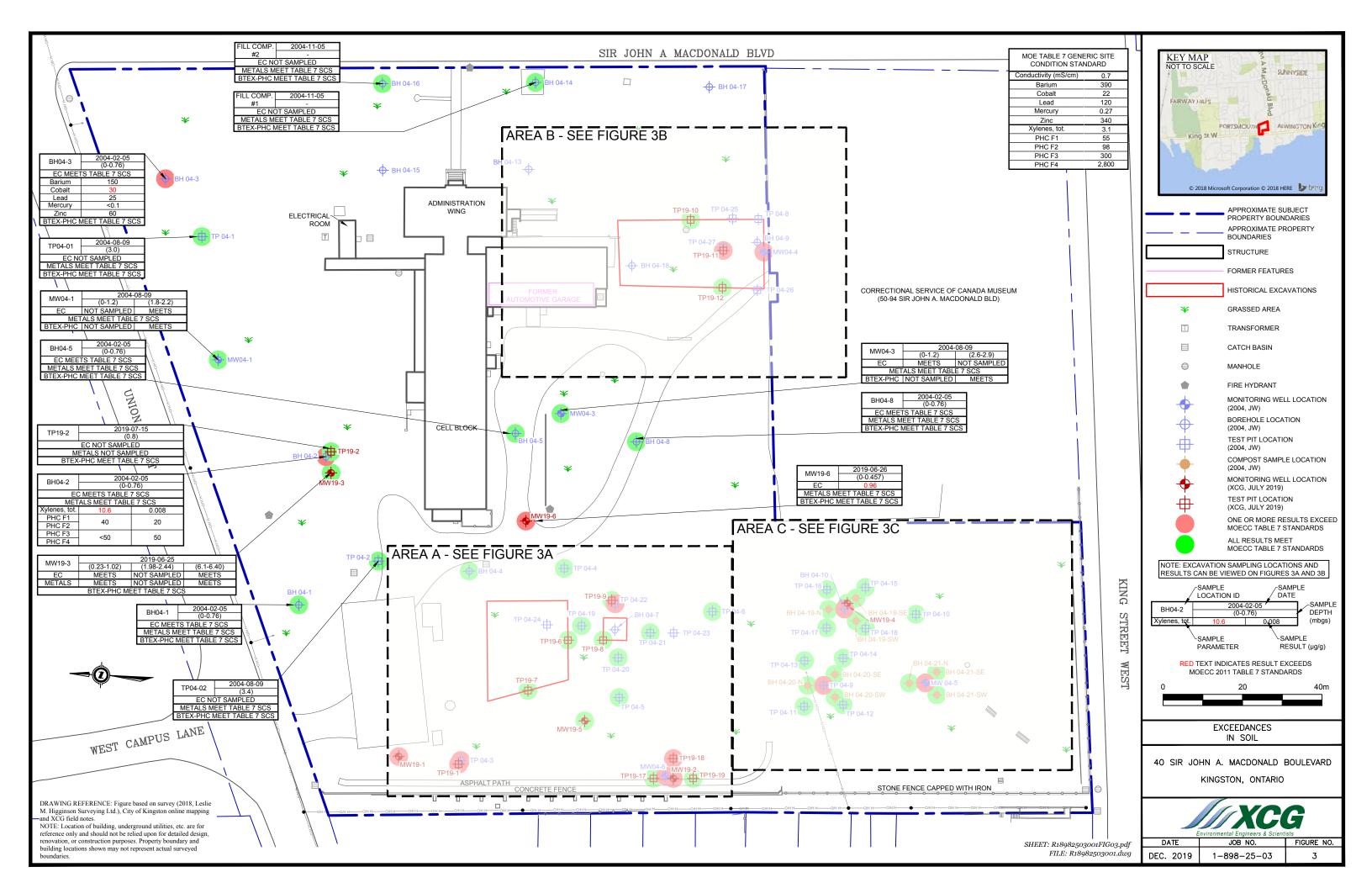
Sample Location	O. D 450/04	O. Reg. 153/04	Danastable	MW04-5	MW19-1		MW19-3		MW	19-4	Trip Blank
Sample ID	O. Reg. 153/04 (2011) - Table 3	(2011) - Table 7	Reportable Detection	MW04-5	MW19-1	MW19-3	Duplicate		MW19-4	MW19-4	-
Laboratory	Residential /	Residential /	Limit	Caduceon	Caduceon	Caduceon	Caduceon		Caduceon	Caduceon	Caduceon
Laboratory ID	Parkland /	Parkland /		B19-21399-6	B19-21399-3	B19-21399-1	B19-21399-7		B19-21399-4	B19-23868-1	B19-21399-8
Sample Date	Institutional	Institutional		12-Jul-19	12-Jul-19	12-Jul-19	12-Jul-19	RPD	12-Jul-19	02-Aug-19	12-Jul-19
	Property Use	Property Use									
Date of Analysis	(µg/L)	(µg/L)	(µg/L)	19-Jul-19	19-Jul-19	19-Jul-19	19-Jul-19		19-Jul-19	08-Aug-19	19-Jul-19
Analytical Report Reference No.				B19-21399	B19-21399	B19-21399	B19-21399		B19-21399	B19-23868-1	B19-21399
Acetone	130,000	100,000	30	< 30	< 30	< 30	< 30	<3 x MDL	< 30	< 30	< 30
Benzene	44	0.50	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
Bromodichloromethane	85000	67000	2	< 2	< 2	< 2	< 2	<3 x MDL	< 2	< 2	< 2
Bromoform	380	5	5	< 5	< 5	< 5	< 5	<3 x MDL	< 5	< 5	< 5
Bromomethane	5.6	0.89	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride	0.79	0.2	0.2	< 0.2	< 0.2	< 0.2	< 0.2	<3 x MDL	< 0.2	< 0.2	< 0.2
Chlorobenzene	630	140	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
Chloroform	2.4	2.0	1	< 1	< 1	< 1	< 1	<3 x MDL	< 1	< 1	< 1
Dibromochloromethane	82000	65000	2	< 2	< 2	< 2	< 2	<3 x MDL	< 2	< 2	< 2
1,2-Dichlorobenzene	4600	150	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
1.3-Dichlorobenzene	9600	7600	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
1,4-Dichlorobenzene	8	0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
Dichlorodifluoromethane	4400	3500	2	< 2	< 2	< 2	< 2	<3 x MDL	< 2	< 2	< 2
1,1-Dichloroethane	320	11	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
1,2-Dichloroethane	1.6	0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
1,1-Dichloroethylene	1.6	0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
cis-1.2-Dichloroethylene	1.6	1.6	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
trans-1,2-Dichloroethylene	1.6	1.6	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
1,2-Dichloropropane	1.6	0.58	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
cis-1,3-Dichloropropylene			0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
	-	-	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
trans-1,3-Dichloropropylene		0.5		< 0.5	< 0.5		< 0.5		< 0.5	< 0.5	< 0.5
1,3-Dichloropropene, total	5.2		0.5			< 0.5		<3 x MDL			
Ethylbenzene	2300	54	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
Ethylene dibromide (Dibromoethane, 1,2-)	0.25	0.20	0.2	< 0.2	< 0.2	< 0.2	< 0.2	<3 x MDL	< 0.2	< 0.2	< 0.2
Hexane	51	5	5	< 5	< 5	< 5	< 5	<3 x MDL	< 5	< 5	< 5
Methyl Ethyl Ketone (2-Butanone)	470000	21000	20	< 20	< 20	< 20	< 20	<3 x MDL	< 20	< 20	< 20
Methyl Isobutyl Ketone	140000	5200	20	< 20	< 20	< 20	< 20	<3 x MDL	< 20	< 20	< 20
Methyl tert-butyl ether	190	15	2	< 2	< 2	< 2	< 2	<3 x MDL	< 2	< 2	< 2
Methylene Chloride (Dichloromethane)	610	26	5	< 5	< 5	< 5	< 5	<3 x MDL	< 5	< 5	< 5
Styrene	1300	43	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
1,1,1,2-Tetrachloroethane	3.3	1.1	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
1,1,2,2-Tetrachloroethane	3.2	0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
Tetrachloroethylene	1.6	0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
Toluene	18000	320	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
1,1,1-Trichloroethane	640	23	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
1,1,2-Trichloroethane	4.7	0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
Trichloroethylene	1.6	0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
Trichlorofluoromethane	2,500	2,000	5	< 5	< 5	< 5	< 5	<3 x MDL	< 5	< 5	< 5
Vinyl Chloride	0.5	0.5	0.2	< 0.2	< 0.2	< 0.2	< 0.2	<3 x MDL	< 0.2	< 0.2	< 0.2
m/p-Xylene	-	-	1	< 1.0	< 1.0	< 1.0	< 1.0	<3 x MDL	< 1.0	< 1.0	< 1.0
o-Xylene	 -	_	0.5	< 0.5	< 0.5	< 0.5	< 0.5	<3 x MDL	< 0.5	< 0.5	< 0.5
Xylenes, total	4200	72	1.1	< 1.1	< 1.1	< 1.1	< 1.1	<3 x MDL	< 1.1	< 1.1	< 1.1
Notes:		,-	1.1	* 1.1	* 1.1	* 1.1	. 1.1	-5 A THIDE	. 1.1	l .	. 1.1

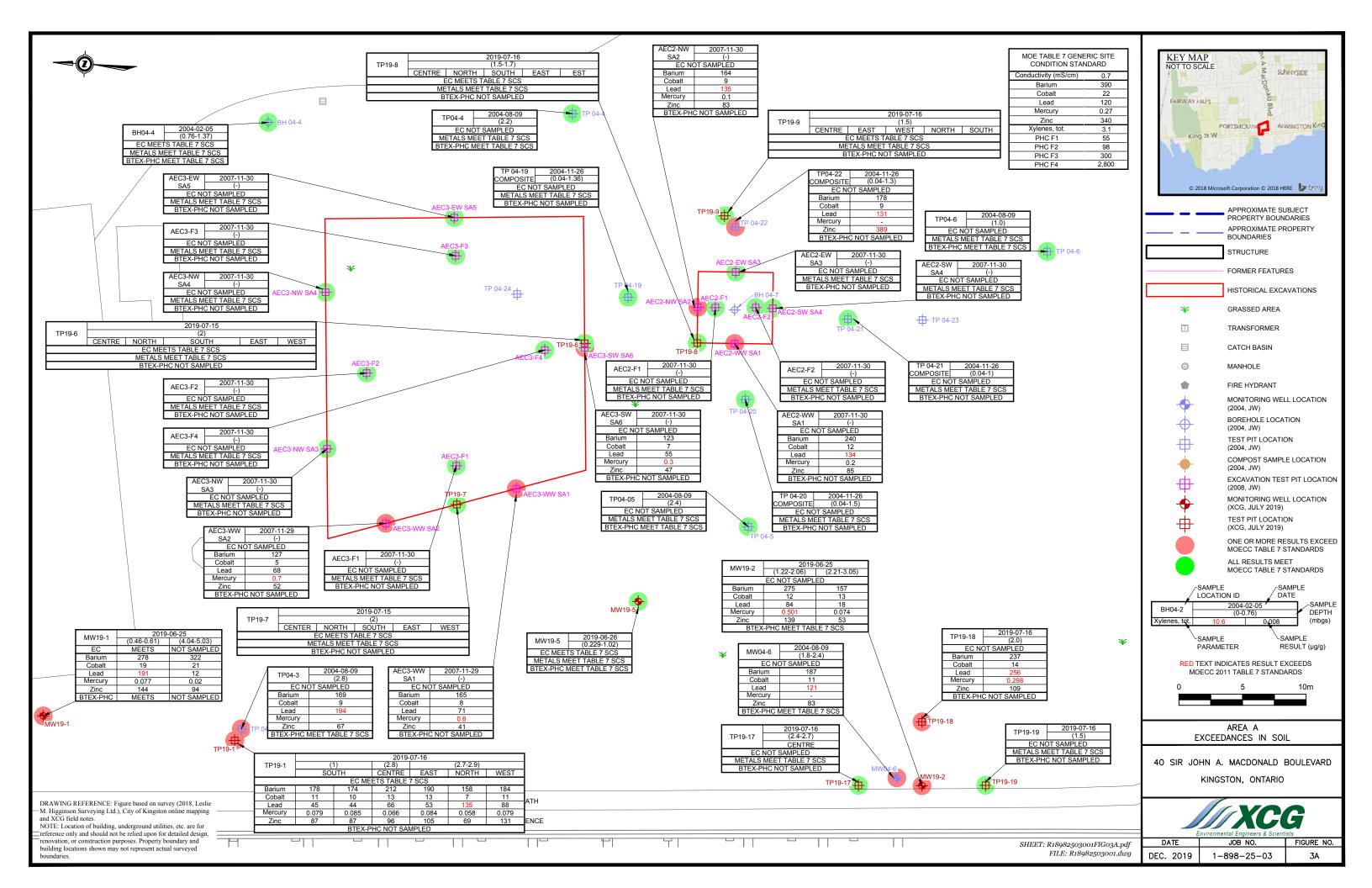
tes: Concentrations Reported in μg

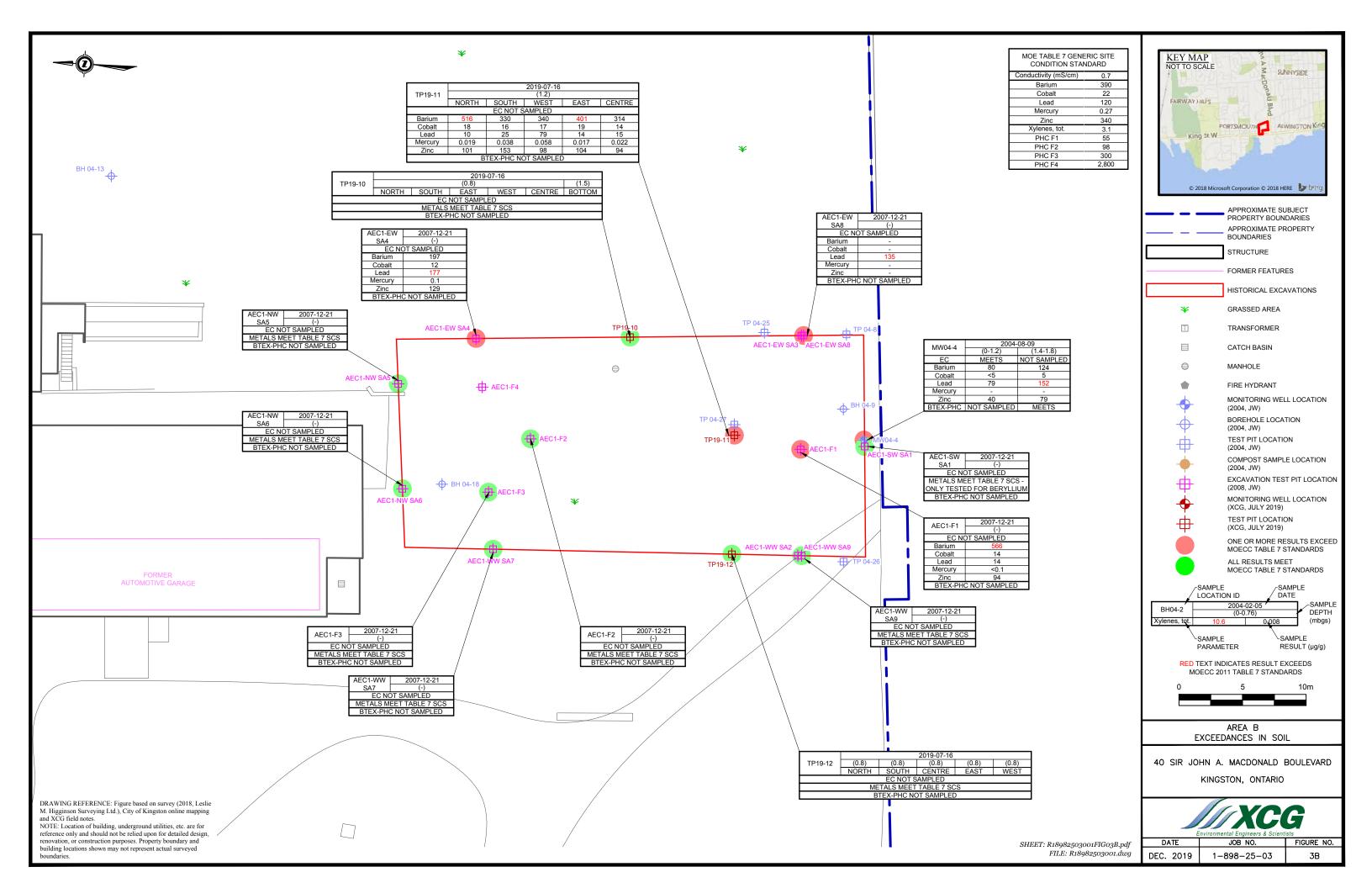
Concentrations Reported in µg/L Below laboratory RDL (Reportable Detection Limit)

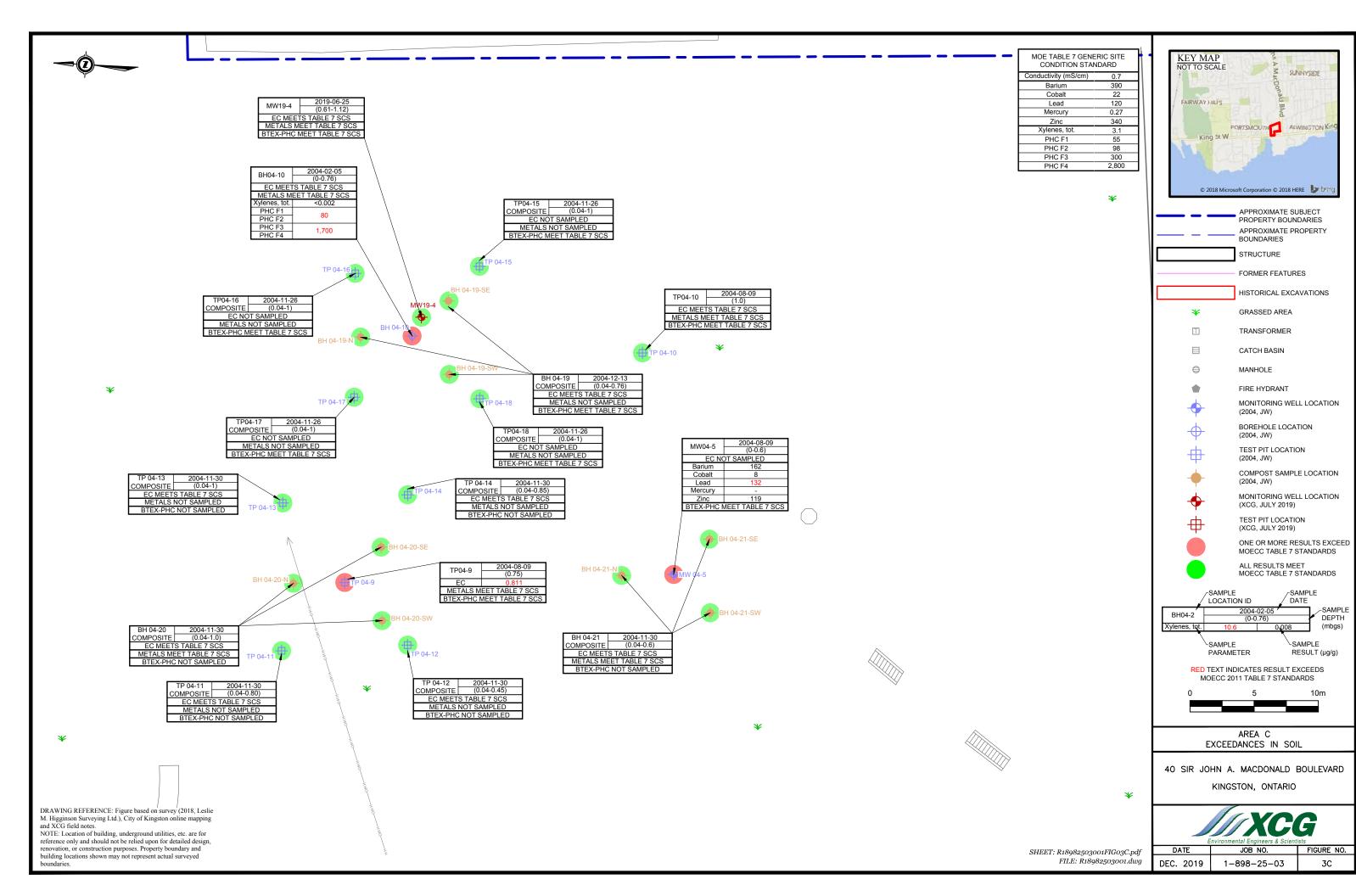

Bold & Shaded
Bold, Shaded, & Underlined
N/V
No Value
Not Analyzed
MOE Table 3 Standards
Ontario Ministry of the Environment's (MOE) "Soil, Ground

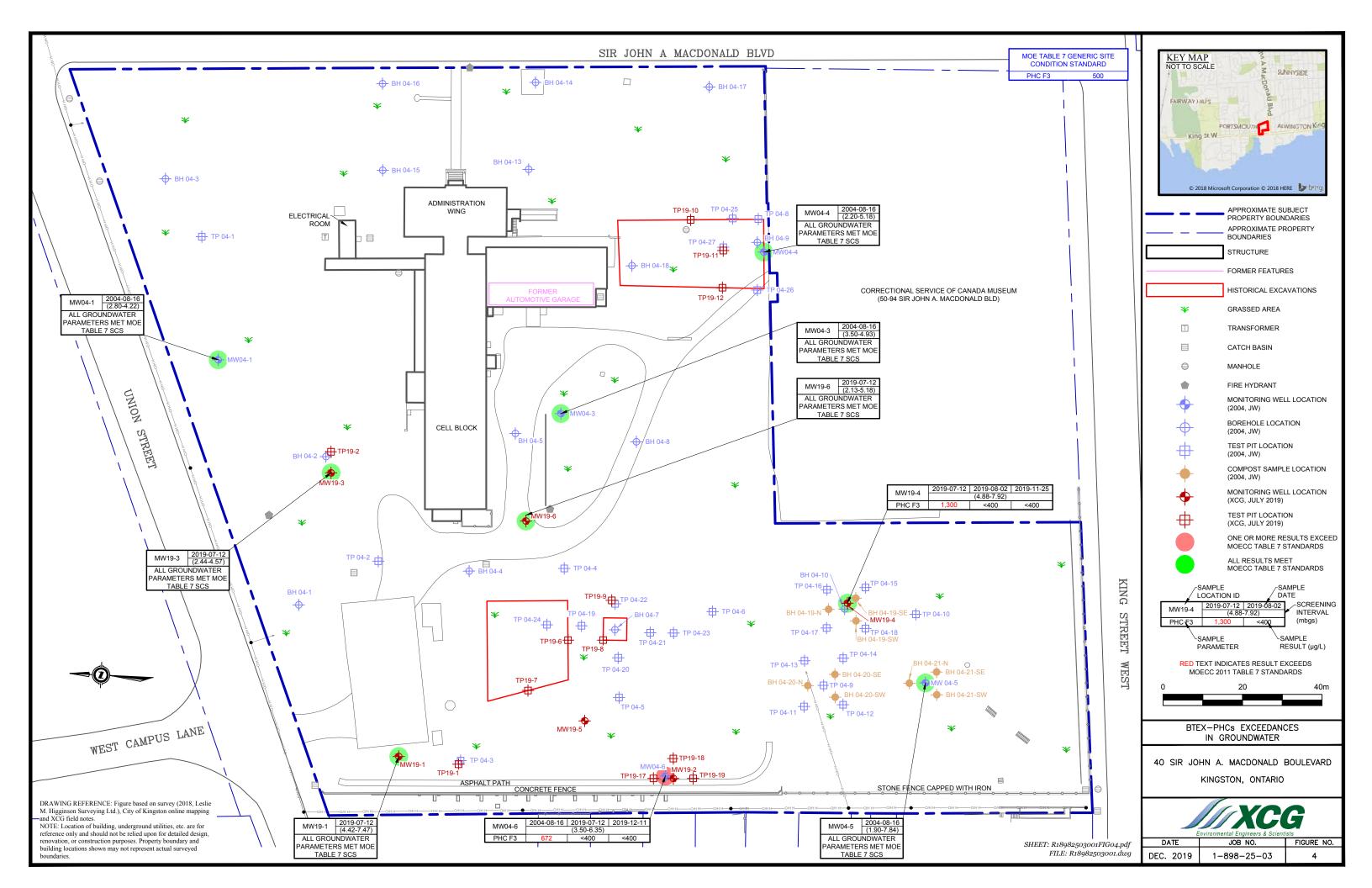

MOE Table 7 Standards


Ontario Ministry of the Environment's (MOE) "Soil, Ground
Water and Sediment Standards for Use Under Part XV.1 of
the Environmental Protection Act" (2011), Generic Site
Condition Standards for Shallow Soils in a Non-Potable
Groundwater Condition, All Types of Property Use




FIGURES





APPENDICES

APPENDIX A QUALIFICATIONS OF XCG PROJECT PERSONNEL

Ms. Paul joined XCG in March 2019. Her areas of specialization include environmental site assessments (ESAs), water and soil sampling, compliance monitoring, and site supervision.

Education

- B.A.Sc., Honors Environmental Engineering, University of Windsor, 2016
- Continuing Education:
 - WHMIS
 - Wildlife Awareness Training
 - Argo Operator Safety Awareness Course
 - Alberta Stack Testing and Sampling
 - Emergency First Aid Level A CPR and AED
 - OSHA 40-hour Hazardous Waste Operations & Emergency Response (HAZWOPER) (2019)
 - Working at Heights Training

Professional Affiliations

· Professional Engineers of Ontario Engineering Intern (EIT) Program

Project Experience

Environmental Site Assessments (ESAs)

- Conducted several Phase I ESAs for commercial and residential properties including apartment buildings, recreational
 centers, and commercial office buildings. The Phase I ESAs included site visits, a review of historical information
 related to the site and neighbouring properties, contacting regulatory authorities, and report preparation. Based on the
 Phase I ESAs, either no areas of potential concern were identified; or several areas of potential concern were
 identified, and Phase II ESAs were proposed.
- Assisted in the sampling, analysis and reporting of several Phase II ESAs including sites where a Record of Site
 Condition in accordance with O. Reg. 153/04 (as amended) was required. The Phase II ESAs included soil sampling
 either by test pits or boreholes, monitoring well installations, well development, site surveying, ground and surface
 water sampling, slug testing (where needed), review of analytical results, and report preparation. Based on the
 Phase II ESA, either the site was considered to meet the applicable standards, or a site remediation was proposed.
- Assisted in developing contaminant zone delineation for remediation work, based on Phase II ESA results.

Site Supervision

- · Supervised the drilling and installation of monitoring wells on sites where Phase II ESAs were required.
- Assisted in supervision and sampling of test pit advancement where soil analysis was required.
- Supervised road, bridge, and water main installations, and water main sampling.

Compliance monitoring

- Compliance reporting (federal and provincial regulations) for the cement industry.
- Worked with and conducted site-specific operations approval reporting, and assisted in the preparation of approval renewals
- Provided information in response to statements of concern from regulating bodies regarding new industrial projects.
- Conducted comprehensive analysis of industrial sites to determine common areas of exceedances and assisted in creating optimization plans to prevent further non-compliance.

Mr. Peters joined XCG in July 2017 as a Project Specialist. He has experience in a variety of environmental areas such as ground and surface water sampling, rainwater tracking, parameter analysis, and stewardship. Mr. Peters has completed numerous soil and water sampling events for various clients, including Picton Terminals, BPE Development, and private contractors, as well as environmental assessments of shoreline properties at different lakes followed by implementation of erosion and runoff control measures for other employers. He has also been involved with Phase I and II Environmental Site Assessments (ESAs).

Education

- Degree in Environmental Studies and Geography, Queens University, 2014
- Diploma as an Environmental Technician, Sir Sandford Fleming College, 2015
- Continuing Education
 - Emergency First Aid & CPR Training Level C, 2015
 - WHMIS, 2017

Project Experience

Soil and Water Remediation Projects

- Ongoing remediation of chlorinated solvent groundwater from a former dry-cleaning establishment using In-Situ Chemical Oxidation (ISCO), Kingston, Ontario.
- Involved in Groundwater delineation and elevation surveys at multiple locations, Kingston, Ontario.
- Supervised soil test pitting at a potentially contaminated site, Kingston, Ontario.
- Collected surface water samples adjacent to a salt storage facility, Picton, Ontario.
- Involved with confirmatory soil sampling after the excavation and removal of underground storage tanks, Nappanee, Ontario.
- Conducted low-flow groundwater monitoring and water levels at various sites.

Ms. Baranova joined XCG in 2009 and is a Project Engineer in the Kingston office. She acquired her Masters in Science in 2017. Her area of specialization is contaminated site assessments including Phase I and II Environmental Site Assessments (ESAs), groundwater and soil remediation, groundwater monitoring, and Risk Assessments (RAs).

Education

- M.Sc. Earth and Environmental Sciences, 2017
- B.A.Sc. Honours Environmental Engineering, 2008
- Continuing Education
 - Risk Assessment of Contaminated Sites
 - Contaminated and Hazardous Waste Site Management
 - Using the Ministry of the Environment (MOE)'s Modified Generic Risk Assessment (MGRA) Tool

Project Experience

Environmental Site Assessment Experience

Conducted Phase I ESAs for over 50 residential, commercial, and industrial properties. The ESAs were conducted to
either CSA Z768-01 standard or Ontario Regulation (O. Reg.) 153/04 (as amended) requirements. The assessments
included site visits, interviews, research and review of historical information, contacting regulatory authorities,
development of conceptual site models, identification of potential contaminating activities and associated areas of
actual or potential environmental concern, and report preparation.

Phase II Investigations and Remediation Experience

- Conducted Phase II ESAs for over 20 residential, commercial, and industrial properties. The ESAs were conducted to
 either CSA Z769-00 standard or O. Reg. 153/04 (as amended) requirements. The assessments included sampling
 plan design, cost estimates, subsurface investigations, data interpretation and analysis, conceptual site model
 development, and report preparation. Some of the contaminants of concern that were investigated included volatile
 organic compounds (VOCs), petroleum hydrocarbons (PHCs), metals, polycyclic aromatic hydrocarbons (PAHs), and
 polychlorinated biphenyls (PCBs).
- Supervised subsurface investigations, such as borehole drilling, monitoring well installations, and test pitting, collected soil samples for laboratory analysis, and recorded soil descriptions.
- Developed and sampled groundwater monitoring wells using a variety of sampling techniques (low-flow, foot-valve, bailer, and bladder pump).
- Conducted groundwater level monitoring and hydraulic conductivity tests.
- Collected sediment and surfaces water samples.
- Supervised excavation of contaminated soil including directing soil removal and completed confirmatory sampling to ensure complete removal of impacted material.

Petroleum Hydrocarbon Projects Experience

- Conducted Phase I and II ESAs, remediation and RAs on sites where PHCs and VOCs were contaminants of concern.
- Supervised fuel underground storage tank (UST) excavations, including collecting confirmatory soil and groundwater samples. Example projects include fuel oil UST removal at a multi-storey residential apartment building, fuel oil tank pulls at four Bell substations, and a fuel tank removal at a commercial property.
- Conducted Phase I and II ESA and remediation on a historical service station property in central Kingston prior to
 property redevelopment to residential use. Characterized and delineated hydrocarbon impacts in soil and groundwater
 and directed soil excavation activities to segregate hazardous and non-hazardous soil for disposal. Conducted postremediation groundwater monitoring.

Natalia Baranova, B.A.Sc., M.Sc., P.Eng. Project Engineer

- Oversaw soil remediation at a commercial property contaminated as a result of a diesel fuel spill. The remediation consisted of delineation and excavation of impacted soil and collection of confirmatory soil samples. The contaminated soil was characterized for disposal and sent to an appropriate facility.
- Investigated downgradient groundwater impacts from a gasoline service station that migrated off-site to a residential property. The investigation included desktop documentation review, installation of monitoring wells, groundwater sampling and data analysis.

Mr. Shipley joined XCG in March 1992. He is a Senior Environmental Engineer and Partner at XCG, and leads the corporate Remediation Group. He has experience in managing and conducting a wide variety of environmental engineering projects, including risk assessments (RA), Phase I and Phase II environmental site assessments (ESAs), hydrogeological investigations, soil and groundwater remediation projects and submission of Records of Site Condition (RSCs) for filing. He also has considerable experience with other types of projects, including environmental compliance audits, ISO 14001 audits and implementations, designated substances and hazardous materials surveys (DSHMS), hazardous materials and waste management projects, health and safety plan development and implementation, environmental assessments, and water and wastewater treatment projects. Mr. Shipley has worked on hundreds of projects, including ESAs, RAs, and remediation projects, involving petroleum hydrocarbon (PHC)-contaminated sites. Mr. Shipley is designated by the Ontario Ministry of the Environment (MOE) as a Qualified Person (QP) for purposes of conducting ESAs and RAs in accordance with Ontario Regulation (O. Reg.) 153/04.

Education

- M.A.Sc., Civil Engineering, University of Waterloo, 1986
- B.A.Sc., Civil Engineering, University of Waterloo, 1985

Professional Affiliations

- Registered Professional Engineer of Ontario
- Auditing Association of Canada, 1996
- Professional Engineer, 1989
- Environmental Professional Compliance Auditor [EP(CEA)], 1996
- Environmental Professional Site Assessment and Reclamation [EP], formerly Certified Environmental Assessor of Sites [CEAS], 2003

Project Experience

Risk Assessment Projects

- Managed or conducted over 30 risk assessments addressing a wide range of contaminants in soil and groundwater, on sites that included old industrial sites, a former illegal landfill site, navigational aid facilities owned and operated by the federal Department of Fisheries and Oceans, schools, commercial properties, automotive maintenance facilities, manufacturing plants, and others. The majority of these sites had PHC contamination.
- Prepared and submitted for filing a RSC for a former industrial property used in the past for battery manufacturing and metal fabrication. XCG, under Mr. Shipley's direction as QP_{RA}, completed a Phase One ESA update, a Phase Two ESA, and a Tier 3 RA. This site had a variety of contaminants of concern, including PHCs. For this property, Mr. Shipley worked with the MOE to prepare a Certificate of Property Use (CPU). This RSC was successfully filed on the MOE Brownfields Environmental Site Registry.
- Prepared and submitted for filing a RSC for a commercial property that was to be converted for a multi-unit residential
 use. XCG, under Mr. Shipley's direction as QP_{RA}, completed a Phase One ESA update, a Phase Two ESA, and a
 Modified Generic Risk Assessment (MGRA). Mr. Shipley worked with the MOE to prepare a CPU. This RSC was
 successfully filed on the MOE Brownfields Environmental Site Registry.
- Acted as QP_{RA} for a risk assessment of a former aluminum casting alloy facility in Toronto. The contaminants of concern
 for this risk assessment included PHCs, metals, and polycyclic aromatic hydrocarbons (PAHs). On the basis of the RA
 and subsequent remediation, a RSC was filed for this property.
- Managed and acted as QP_{RA} for a project at a former ship building and dry dock waterfront site contaminated with PHCs, including free product hydrocarbons, as well as metals, PAHs, and volatile organic compounds (VOCs). Completed Phase One and Two ESAs, a soil vapour investigation, and a RA.

- Managed and acted as QP_{RA} for a project at a former industrial property on the Kingston waterfront, used in the past as
 a grain elevator and then later for a salvage operation, that was contaminated with PHCs, metals, and PAHs. Completed
 Phase One and Two ESAs and a RA.
- Managed, acted as QP_{RA}, and/or provided senior quality assurance review for many other risk assessment projects involving a variety of different contaminants and hydrogeological settings. The majority of these sites had PHCs as contaminants of concern.

Environmental Site Assessment Projects

- Managed over 200 Phase I and II ESAs of Department of Fisheries and Oceans facilities, including small craft harbors, light houses, other navigational aids, gauging stations, and coast guard stations. Most of these projects required enhanced Phase I ESAs, involving sampling of sediment, soil, and building materials, and compliance auditing.
- Participated in a project for a major bank, requiring the completion of Phase I ESAs on approximately 90 industrial, commercial, and residential properties located in Ontario and in other parts of Canada.
- In addition to the above, Mr. Shipley has completed or managed over 1,000 Phase One and Phase Two ESAs of heavy industrial, light industrial, commercial, institutional, and residential facilities, including metal fabricators, foundries, tanneries, aluminum processing/fabricating plants, industrial distribution facilities, crane and conveyor manufacturers, former furniture factories, agricultural operations, such as farms and hatcheries, auto parts operations, waste processing and recycling facilities, auto body shops, railway and road rights-of-way, municipal works yards, maintenance garages, commercial buildings, apartment buildings, restaurants, health care facilities, existing and former service stations, movie theatres, and many others. The majority of these sites had PHCs as contaminants of concern.
- Prepared and submitted for filing RSCs for approximately 20 commercial and residential sites that had been the subject
 of Phase One and/or Phase Two ESAs completed by XCG under Mr. Shipley's direction. These RSCs were successfully
 filed on the MOE Brownfields Environmental Site Registry. The majority of these sites had PHCs as contaminants of
 concern.

Soil and Groundwater Remediation Projects

- Managed a project for Public Works and Government Services Canada requiring the remediation of contaminated sediments in the Kingston Dry Dock. This project involved the removal of contaminated sediment from the bottom of the Kingston Dry Dock using a wet removal method and processing the sediment through polymer addition, mixing and dewatering using a filter press.
- Coordinated the decommissioning of a manufacturing plant that had been in use since the 1930s for the production of agricultural equipment, shells and other ammunition, steel office furniture, and other products. This site had extensive PHC contamination that was remediated under Mr. Shipley's direction. Groundwater containing elevated concentrations of a number of chemicals used in industrial degreasing solvents (including trichloroethylene) was found in an aquifer beneath the above site. A risk assessment was conducted to evaluate the risk to down-gradient municipal drinking water supply wells. Mr. Shipley managed the installation and operation of a pump-and-treat system, involving an advanced oxidation process (AOP) UV/oxidation unit, to address the groundwater impact.
- Managed a project at a commercial plaza involving the use of potassium permanganate sub-surface injections to chemically oxidize perchloroethylene contamination arising from the presence of a former dry cleaning operation on the property.
- Prepared and submitted for filing RSCs for approximately ten different industrial, commercial and residential properties
 that had been the subject of Phase One and Two ESAs and soil and groundwater remediation projects completed by
 XCG under Mr. Shipley's direction. These RSCs were successfully filed on the MOE Brownfields Environmental Site
 Registry. The majority of these sites had PHCs as contaminants of concern.
- Managed the decommissioning and remediation projects at many other sites, including former automotive
 maintenance facilities, municipal works yards, former industrial facilities, former service stations, institutions such as
 correctional facilities, residential properties with former underground heating oil tanks, and many others. The majority
 of these sites had PHCs as contaminants of concern.

www.xcg.com 2

APPENDICES

APPENDIX B TEST PIT AND BOREHOLE LOGS

XCG Consulting Ltd. 100-4 Cataraqui Street Kingston, Ontario K7K 127

BORING NUMBER MW19-1

PAGE 1 OF 1

PROJ			A Investme			PROJECT NAME Phase II ES/ PROJECT LOCATION 40 Sir Je		Donald Boulevard, Kingston
ATE	ST	ARTE	D _06/25/1	9	COM	PLETED _06/25/19	HOL	E SIZE 0.15m
					ing	GROUND WATER LEVELS:		
			HOD CM			AT TIME OF DRILLING		
.OGG	ED	BY _	NB		CHE	KED BY NB AT END OF DRILLING		
OTE	S					AFTER DRILLING		
DEPTH (m)	SAMPLE	TYPE	BLOW COUNTS (N VALUE)	ENVIRONMENTAL DATA	GRAPHIC LOG	MATERIAL DESCRIPTION		WELL DIAGRAM Casing Type: Stick up
	\mathbb{N}	00	0.007	PID = 7.2	71.7		98.39	
-	N	SS 1	3-2-3-7 (5)	PID = 7		Dark brown, wet, SILT, trace medium sand, trace fine gravel, trace organic matter. trace coal in bottom 0.15m, no odour, no staining.	97.93	
1	$\left\ \cdot \right\ $	SS 2	4-6-6-3 (12)	PID = 8.6		Brown, moist to wet CLAY and SAND and GRAVEL, trace coal, trace brick, medium dense, mushroom/forest floor odour, no staining. 1.22	97.32	
-	$\left \right $	SS 3	5-8-6-10 (14)	PID = 12.3		Grey to brown SILTY SAND and gravel, trace brick, loose, no odour, no staining. 1.83	96.71	
2		SS 4	11-5-3-3 (8)	PID = 6.4		1.91 Grey to brown SILTY SAND and gravel, trace brick, loose, no odour, no staining. Light brown, medium grained SAND and gravel, trace brick	96.63 96.51	■ Bentonite (0 - 3.9 mbgs)
3		SS 5	2-2-4-6 (6)			\debris, poorly graded. Brown, moist, CLAYEY SILT, some gravel, trace coal and brick, soft, medium plasticity, plasticity increasing with depth, no odour, no staining. 3.05	95.49	
-		SS 6	4-2-11-5 (13)	PID = 4.6		Brown, wet, SILTY CLAY, some gravel, trace coal, soft, medium plasticity, plasticity increasing with depth, no odou no staining.	۲,	
4		SS 7	1-1-2-3 (3)	PID = 2.7		3.66 Brown, moist, SILTY CLAY, trace coal, trace brick debris, medium stiff, low plasticity, no odour, no staining. Light brown, moist, CLAYEY SILT, soft to medium stiff, low	94.88	
-		SS	8-9-12-16	PID = 3.9		plasticity, dark brown mottling, no odour, no staining. with some medium to coarse sand beet red mottling, below		
5	$/\!\!/$	8	(21)			4.27 mbgs		
<u> </u>		AU 9			presenta 	Light brown, moist to wet, SANDY SILT, some clay, trace coase sand, medium stiff, medium plasticity, rusty mottling water in clay cracks, no odour, no staining.	93.51	
6	$\frac{1}{}$	SS 10	3-6-4-4 (10)	PID = 1.8		6.10	92.44	Sand pack (3.96 7.47 mbgs) Screen (4.42 - 7.
- - - - 7		AU 11				Augered through similar material as above to 7.47m where water was encountered.		mbgs)
-	\perp					7.47	91.07	

XCG Consulting Ltd. 100-4 Cataraqui Street

CLIENT ABN PROJECT NUM DATE STARTE	MBER <u>1-89</u> D <u>06/25/1</u> ITRACTOR	nts 98-25-03 9 G.E.T Dril	COMPLE	TED _06/26/19	PROJECT LOCATION 40 Sir John GROUND ELEVATION 98.45 m GROUND WATER LEVELS:	hn A MacDonald Boulevard, Kingston
				D BY NB		
DEPTH (m) SAMPLE TYPE NUMBER		ENVIRONMENTAL DATA	GRAPHIC LOG	MATE	ERIAL DESCRIPTION	WELL DIAGRAM Casing Type: Stick up
ss 1	2-2-5-6 (7) 4-4-6-10	PID = 2.1 PID = 2.2	0.30	no odour, no staining Brown, moist, CLAYE	Y SILT with trace fine to medium oris, trace porcelain, very stiff,	98.15
2 SS 3	2-1-1-8 (2)	PID = 2.3	1.22	Brown, moist, CLAYE	9.91m. Y SILT trace coarse sand, trace brick, el, soft, medium plasticity, no odour,	97.23
2 SS 4 SS 5 SS 6 SS 6	12-2-5-3 (7) 3-3-3-16	PID = 2.2	2.06	Grey, SAND and GRA coarse gravel, dense Brown, moist, SILTY medium to coarse sa	AVEL, medium to coarse sand, fine to angular, no odour, no staining. CLAY (suspected native), trace and, trace fine to coarse gravel, trace	96.39 96.24 — Bentonite (0 - 4.42 mbgs)
5	(6)		3.05	dark brown mottling. Likely SILTSTONE be (Bedrock drilled using from rock dust)	g Air Hammer tools; Rock type inferred	95.40
5			X	Void encountered at		Sand pack (4.42 - 7.82 mbgs) Screen (4.78 - 7.82 mbgs)
			× × × × × × × × × × × × 7.82		om of hole at 7.82 m.	90.63

XCG Consulting Ltd. 100-4 Cataraqui Street

	A Investmei	nts			PROJECT NAME Phase II ESA		
T NUN	IBER _ 1-89	98-25-03			PROJECT LOCATION 40 Sir John	nn A Ma	cDonald Boulevard, Kingstor
ARTE	D 06/25/1	9	CON	IPLETED 06/25/19	GROUND ELEVATION 99.255 m	но	LE SIZE 0.15m
G CON	ITRACTOR	G.E.T Drill	ing		GROUND WATER LEVELS:		
BY	NB		CHE	CKED BY NB			
		7					
TYPE NUMBER	BLOW COUNTS (N VALUE)	ENVIRONMENTA DATA	GRAPHIC LOG	МАТІ	ERIAL DESCRIPTION		WELL DIAGRAM Casing Type: Stick up
SS 1	3-15-8-8 (23)		600	and fine-medium san		99.03	
ss	5-7-5-4		40 C	Grey, moist, SAND a	sand, dense, no odour, no staining. nd GRAVEL, medium coarse sand,	98.65	
2	(12)	11.5	Po N	1.22	· •	98.04	← Bentonite (0-2.29 mbgs)
SS 3	3-4-4-6 (8)	PID = 11.3		odour, no staining.		97.43	
SS 4	5-10-7-17 (17)	PID = 12.3		sand and gravel, med staining.	dium stiff, high plasticity, no odour, no	97.28	
SS 5	6-6-9-13 (15)	PID = 11.8		content increasing wi	ith depth), medium stiff, high plasticity,	96.21	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
6	7-15-30-21 (45)	PID = 7.9		3.66 Brown, wet, CLAYEY	SILT, trace fine gravel and	95.60	Sand pack (2.29 4.57 mbgs)
7	8-37	PID = 6.7		mottling, no odour, no Brown, wet, SANDY	o staining. SILT, medium to coarse sand, fine	:	\Screen (2.44 - 4. mbgs)
8				odour, no staining.	tionly, orange and beet red mouning, no	:	
				4.57	tom of hole at 4.57 m.	94.69	
	S CON G MET BY BY BALL S1 S2 S3 S4 S5 S6 S7 AU	SS 3-15-8-8 1 (23) SS 5-7-5-4 2 (12) SS 3-4-4-6 3 (8) SS 5-10-7-17 4 (17) SS 6-6-9-13 5 (15) SS 7-15-30-21 (45) SS 7 8-37	SS 3-4-4-6 RID = 11.3 SS 5-7-5-4 RID = 13.3 SS 5-10-7-17 A (17) PID = 12.2 SS 6-6-9-13 S (15) PID = 11.8 SS 7-15-30-21 (45) PID = 7.9 SS 7 RID = 6.7 AU	SS 3-4-4-6 (12) SS 4-4-6 (12) SS 5-10-7-17 4 (17) SS 6-6-9-13 5 (15) SS 7-15-30-21 (45) PID = 17.9 SS 7 PID = 17.9 SS 8-37 PID = 6.7 AU	SS 3-4-4-6 SS 3-4-4-6 3 (15) PID = 11.3 SS 5-10-7-17 4 (17) PID = 12.2 SS (15) PID = 11.8 SS (15) PID = 11.8	GONTRACTOR G.E.T Drilling GROUND WATER LEVELS: AT TIME OF DRILLING —— AFTER DRILLING —	SS 3-4-4-6 (8) PID = 11.3 SS 5-10-7-17 (17) PID = 12.2 PID = 12.3 SS 6-6-9-13 SS 6-6-9-13 (15) PID = 11.8 SS 7-15-30-21 (6 (45)) PID = 17.9 SS 7-15-30-21 (6 (45)) PID = 17.9 SS 7-15-30-21 (6 (45)) PID = 6.7 PID = 17.9 PID = 6.7 PID = 18.8

XCG Consulting Ltd.

	XC	G	Kingston, C K7K 1Z7	raqui Street Ontario			PAGE 1 OF
CLIENT _A	BNA Investme	ents	613) 542-5	5888			Poulovard Vincetor
	NUMBER1-8				PROJECT LOCATION 40 Sir Joh		
	RTED 06/25/1				GROUND ELEVATION 100.215 m	HOLE SIZE	0.15/0.10m
			ing		GROUND WATER LEVELS:		
	METHOD <u>CM</u>						
				KED BY NB			
NOTES	1				AFTER DRILLING	T	
DEPTH (m) SAMPLE TYPE	NUMBER BLOW COUNTS (N VALUE)	ENVIRONMENTAL DATA	GRAPHIC LOG	MAT	ERIAL DESCRIPTION		VELL DIAGRAM sing Type: Stick up
1 1 1	SS 2-1-6-6 1 (7)	PID = 5.1	1/ 1/1/ 1/1/ 1/1/ 1/1/ 1/1/ 1/1/ 1/1/	Brown, dry to moist, trace fine gravel, trac dense, no odour, no 0.61	TOPSOIL with fine sand, trace rootlets, ce coal debris, trace brick debris, staining.	99.61	
1	SS 2-2-6- 2 28/0.08	PID = 11.8		Brown, moist, CLAYI gravel, trace coal and	EY SILT, trace coarse sand and fine d rootlets, stiff, no odour, no staining.	99 10	
	AU 3			1.14 \rangle Grey, crushed LIMES LIMESTONE bedroo		√99.08/	
2				from rock dust)	g Air Hammer tools; Rock type inferred		
-							■ Bentonite (0 - 4.57 mbgs)
3							
_							
4 -							
-	4						
5							.1
]							
6							Sand pack (4.57 -
							7.92 mbgs) Screen (4.88 - 7.92 mbgs)
7							
_				7.92		92.30	

XCG Consulting Ltd. 100-4 Cataraqui Street

		KCC	3 .	(ingston, 177)	Ontario		PAGE 1 OF
			(613) 542-	-5888		
l		A Investme				PROJECT NAME Phase II ESA	
		IBER <u>1-8</u>				PROJECT LOCATION 40 Sir John	
		D _06/26/1			IPLETED <u>06/26/19</u>		HOLE SIZE 0.15/0.10m
				ing		GROUND WATER LEVELS:	
		HOD CM					
				CHE	CKED BY NB		
NOTE	s					AFTER DRILLING	
DEPTH (m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	ENVIRONMENTAL DATA	GRAPHIC LOG		ERIAL DESCRIPTION	WELL DIAGRAM Casing Type: Stick up
	\bigvee_{ss}	3-4-5-7	PID = 16.2	71 V 71	10 00 2.011, 4, 5.41.4, 1.4	DPSOIL with medium to coarse sand atter, no odour, no staining.	98.37
· -	1	(9)			Dark brown, moist, C gravel, trace organic	LAYEY SILT with coarse sand, trace matter, trace coal, trace brick, medium city, no odour or staining.	
1	SS 2	5-9-10-5 (19)	PID = 14.8		1.02 1.14	_ 9	97.58 97.46
-	+		PID = 10.1 PID = 19.5		1.22 Gravel and coal conte	ent increases with depth.	97.38
	SS 3	5-7-6-7 (13)	PID = 22		Brown, moist, SAND loose.	y SAND, no staining, no odour. with some clay and some fine gravel,	← Bentonite (0 - 3.20 mbgs)
2	ss	11-5-4-6	-	; O; <	Grey-brown, moist FI loose. Suspected loose grav	LL material with sand, clay and gravel,	96.77 mbgs)
	4	(9)			2.44		96.16
 	SS 5	2-2-5 (7)	PID = 20.1		trace brick, soft. 2.87 Refusal at bedrock.	•	95.73
					3.20 SANDSTONE		95.40
-	-				(Bedrock drilled using from rock dust) LIMESTONE	g Air Hammer tools; Rock type inferred	
4							
]				SANDSTONE	9	94.33
	1				4.70 LIMESTONE	9	93.90 Sand pack (3.20 -
5							6.32 mbgs) Screen (3.28 - 6.32
							mbgs)
	-						
				Щ			
 6				曲			
				H			
					6.32 Bott	tom of hole at 6.32 m.	92.28

XCG Consulting Ltd. 100-4 Cataraqui Street

DRILLI DRILLI LOGGI	NG NG ED	CON MET BY	TRACTOR HOD CM	G.E.T Drill	ing CHE	PLETED _06/26/19 CKED BY _NB	AT TIME OF DRILLING			
DEPTH (m)	SAMPLE	TYPE NUMBER	BLOW COUNTS (N VALUE)	ENVIRONMENTAL DATA	GRAPHIC LOG		ERIAL DESCRIPTION		WELL DIAGRAM Casing Type: Stick up	
 	M	SS 1	18-18-4	PID = 13.1	1111	coarse sand and trac	GRAVEL, trace brick, trace medium to e fine gravel, no odour, no staining.	98.56		
 _ 1 -		SS 2	3-3-4-4 (7)	PID = 7.8		soft, no odour, no sta Brown, SILTY CLAY v	with debris, no odour, no staining.	98.41	←Bentonite (0 mbgs)	- 1.83
	M	SS 3	3-4-4-5 (8)	PID = 12.8		Brown, moist, SILTY odour, no staining.	CLAY, trace debris, low plasticity, no	97.19	٥	
2	M	SS 4	3-3-5-5 (8)	PID = 9		Brown, moist, SILTY crumbly, orange and staining.	CLAY, trace debris, low plasticity, beet red mottling, no odour, no			
 - 3	M	SS 5	4-6-7-7 (13)	PID = 5.9		Brown, moist, SILTY: plasticity, no odour, n 3.05	_	96.58 95.97		
	\bigvee	SS 6	6-12-25- 30/0.08	PID = 5.7		Brown, moist, SAND\ quartz, trace plant ba	Y SILT with some medium gravel, trace sed charcoal, soft to stiff, trace beet mottling, no odour, no staining.	95.97		1.83 -
4		AU				LIMESTONE with sar (Bedrock drilled using from rock dust)	ndstone layers. g Air Hammer tools; Rock type inferred	93.84	5.18 mbgs) Screen (2.13 mbgs)	i - 5.18
· ·				•			om of hole at 5.18 m.	00.0.		

XCG Consulting Ltd. 100-4 Cataraqui Street Kingston, Ontario K7K 1Z7

TEST PIT NUMBER TP19-1

PAGE 1 OF 1

		(613) 542-5888						
CLIENT ABNA	Investments			PROJECT NAME Phase II ESA				
PROJECT NUMI	BER <u>1-898-25-03</u>							
DATE STARTED	07/15/19	COMPLET	ED 07/15/19	GROUND ELEVATION	TEST PIT S	SIZE		
				GROUND WATER LEVELS:				
				AT END OF EXCAVATION				
DEPTH (m) SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE) ENVIRONMENTAL DATA	GRAPHIC LOG		MATERIAL DESCRIPTION		WELL DIAGRAM		
		1.00	and coal, loose fill be control of the coal of the coa	with gravel, cobbles and boulders, between rocks. No odour or staining, moist CLAY with gravel, high planum, moist SILTY CLAY with trace city. No odour or staining.	asticity, soft.			
2 GB		2.90	Black staining on E. North: Brown, mois cobbles and boulde South East: Brown, boulders, trace bric	ast wall. No odour. (1.2m) t CLAYEY SILT with some sand, gen. No odour or staining. moist SILTY CLAY with gravel, control of the control of	obbles and			
2				Bottom of test pit at 2.90 m.				

XCG Consulting Ltd. 100-4 Cataraqui Street Kingston, Ontario K7K 1Z7

TEST PIT NUMBER TP19-10

PAGE 1 OF 1

CLIENT ABNA Investments PROJECT NUMBER 1-898-25-03 DATE STARTED 07/16/19 COMPLETED 07/16/19 EXCAVATION CONTRACTOR Doornekamp Construction Ltd. EXCAVATION METHOD CAT305.5E2 LOGGED BY GP CHECKED BY KPP NOTES					Construction Ltd. KED BY KPP	PROJECT LOCATION 40 Sir John A MacDonald Boulevard, Kingston GROUND ELEVATION TEST PIT SIZE GROUND WATER LEVELS: AT TIME OF EXCAVATION AT END OF EXCAVATION		
DEPTH (m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	ENVIRONMENTAL DATA	GRAPHIC LOG		MATERIAL DESCRIPTION	WELL DIAGRAM	
 1 -	GB 1 GB 2		8		Brown, dry SANI	D with clay, no odour or staining.		
					60			
				Province of		Bottom of test pit at 2.60 m.		

XCG Consulting Ltd. 100-4 Cataraqui Street Kingston, Ontario K7K 127

TEST PIT NUMBER TP19-11

PAGE 1 OF 1

CLIENT ABNA Investments PROJECT NUMBER 1-898-25-03 DATE STARTED 07/16/19 COMPLETED 07/16/19 EXCAVATION CONTRACTOR Doornekamp Construction Ltd. EXCAVATION METHOD CAT305.5E2 LOGGED BY GP CHECKED BY KPP NOTES				COMF ekamp (2) CHEC	PLETED _07/16/19 Construction Ltd.	PROJECT LOCATION 40 Sir John A II GROUND ELEVATION 7 GROUND WATER LEVELS: AT TIME OF EXCAVATION AT END OF EXCAVATION	MacDonald Boulevard, Kingston TEST PIT SIZE
	~	BLOW COUNTS (N VALUE)	ENVIRONMENTAL DATA	GRAPHIC LOG		ATERIAL DESCRIPTION	WELL DIAGRAM
 1	GB 1 GB 2				odour or staining.	ND with trace boulders, wires and rebar. No	

ENVIRONMENTAL BH 18982503 BOREHOLE LOGS.GPJ GINT STD CANADA.GDT 08/28/19

XCG Consulting Ltd. 100-4 Cataraqui Street Kingston, Ontario K7K 1Z7

TEST PIT NUMBER TP19-12

PAGE 1 OF 1

CLIENT ABNA Investments PROJECT NUMBER 1-898-25-03 DATE STARTED 07/16/19 COMPLETED 07/16/19 EXCAVATION CONTRACTOR Doornekamp Construction Ltd. EXCAVATION METHOD CAT305.5E2 LOGGED BY GP CHECKED BY KPP NOTES			PLETED _07/16/19 Construction Ltd.	PROJECT LOCATION 40 Sir J GROUND ELEVATION GROUND WATER LEVELS: AT TIME OF EXCAVATION AT END OF EXCAVATION	lohn A MacDonald Boulevard, Kingston TEST PIT SIZE		
DEPTH (m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	ENVIRONMENTAL DATA	GRAPHIC LOG	Мл	ATERIAL DESCRIPTION	WELL DIAGRAM
1	GB 1				Brown, dry SILTY SA	ottom of test pit at 1.50 m.	

ENVIRONMENTAL BH 18982503 BOREHOLE LOGS.GPJ GINT STD CANADA.GDT 08/28/19

XCG Consulting Ltd. 100-4 Cataraqui Street

TEST PIT NUMBER TP19-17

))) ACG	Kingston, Ontario K7K 1Z7		PAGE 1 OF 1		
CLIENT ABNA Investments	(613) 542-5888	PROJECT NAME Phase II ESA			
PROJECT NUMBER 1-898-25-03					
			TEST PIT SIZE		
EXCAVATION CONTRACTOR _ Doors					
EXCAVATION METHOD _CAT305.5E	<u> </u>	AT TIME OF EXCAVATION _			
LOGGED BY GP	CHECKED BY KPP	AT END OF EXCAVATION			
NOTES		AFTER EXCAVATION			
DEPTH (m) SAMPLE TYPE NUMBER BLOW COUNTS (N VALUE) (N VALUE) ENVIRONMENTAL DATA	GRAPHIC GRAPHIC	MATERIAL DESCRIPTION st SANDY SILT with clay, dark grey and o	WELL DIAGRAM		
	patches. No odo	Bottom of test pit at 2.70 m.			

XCG Consulting Ltd. 100-4 Cataraqui Street

TEST PIT NUMBER TP19-18

	Kingston, Ontario K7K 1Z7		PAGE 1 OF 1		
CLIENT ABNA Investments	(613) 542-5888				
PROJECT NUMBER 1-898-25-03					
DATE STARTED 07/16/19	COMPLETED 07/16/19	GROUND ELEVATION	TEST PIT SIZE		
EXCAVATION CONTRACTOR Door	nekamp Construction Ltd.	GROUND WATER LEVELS:			
EXCAVATION METHOD CAT305.5E	<u> </u>	AT TIME OF EXCAVATION			
LOGGED BY GP	CHECKED BY KPP	AT END OF EXCAVATION			
NOTES		AFTER EXCAVATION			
DEPTH (m) SAMPLE TYPE NUMBER COUNTS (N VALUE) ENVIRONMENTAL	GRAPHIC LOG N	ATERIAL DESCRIPTION	WELL DIAGRAM		
	dense.	TY SAND with gravel and pieces of brick and pi	Κ,		

XCG Consulting Ltd. 100-4 Cataraqui Street Kingston, Ontario K7K 1Z7

TEST PIT NUMBER TP19-19

PAGE 1 OF 1

J)/ ACG	K7K 1Z7 (613) 542-5888				
CLIENT ABNA Investments	(0.0) 0.12 0000	PROJECT NAME Phase II ESA			
PROJECT NUMBER 1-898-25-03		PROJECT LOCATION 40 Sir John A N			
		GROUND ELEVATION T	EST PIT SIZE		
		GROUND WATER LEVELS:			
EXCAVATION METHOD CAT305.5					
LOGGED BY GP NOTES					
		ALTER EXOAVATION			
DEPTH (m) SAMPLE TYPE NUMBER BLOW COUNTS (N VALUE) (N VALUE) ENVIRONMENTAL DATA	GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGRAM		
1	Brown, moist, staining, no o				
		Bottom of test pit at 2.80 m.			

XCG Consulting Ltd. 100-4 Cataraqui Street

TEST PIT NUMBER TP19-2

	KCG	Kingston, Ontari K7K 1Z7	0		PAGE 1 OF	
		(613) 542-5888				
CLIENT ABNA						
			TED 07/45/40			
				GROUND ELEVATION TEST PIT SIZE GROUND WATER LEVELS: AT TIME OF EXCAVATION		
	_	305.5E2				
			D BY KPP			
DEPTH (m) SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	BATA GRAPHIC LOG		MATERIAL DESCRIPTION	WELL DIAGRAM	
		0.10		SOIL, sand with gravel. No odour or stair	ning.	
-		0.30	Grey, GRAVEL w	rith SAND, dry. No odour or staining.		
GB 1		2.30	Brown, dry, CLAY staining.	very dense, low plasticity. No odour or		

XCG Consulting Ltd. 100-4 Cataraqui Street Kingston, Ontario K7K 127

TEST PIT NUMBER TP19-6

PAGE 1 OF 1

	XCC	(Kingston, Ontario (7K 1Z7 613) 542-5888)		
	NA Investmen					
						hn A MacDonald Boulevard, Kingston
					GROUND ELEVATION	TEST PIT SIZE
					GROUND WATER LEVELS:	
				D BY KPP		-
				<u> </u>		
					74 12K 2KO/K// KITOK	
DEPTH (m) SAMPLE TYPE	BLOW COUNTS (N VALUE)	ENVIRONMENTAL DATA	GRAPHIC LOG	Ми	ATERIAL DESCRIPTION	WELL DIAGRAM
1	3		2.30	Grey, moist, CLAY, lo	ow plasticity. Likely native clay.	

XCG Consulting Ltd. 100-4 Cataraqui Street Kingston, Ontario K7K 1Z7

TEST PIT NUMBER TP19-7

PAGE 1 OF 1

PROJI DATE EXCA' EXCA' LOGG	STARTE VATION VATION ED BY	D 07/15/19 CONTRACT METHOD _	nts 98-25-03 9 OR <u>Doorn</u> CAT305.5E	COMPLET Nekamp Con		PROJECT LOCATION 40 Sir John A MacDonald Boulevard, GROUND ELEVATION TEST PIT SIZE GROUND WATER LEVELS: AT TIME OF EXCAVATION				
DEPTH (m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	ENVIRONMENTAL DATA	GRAPHIC LOG	MA	TERIAL DESCRIPTION	WELL DIAGRAM			
1	GB 1					GRAVEL, some cobbles and bricks.				
	GB 2			2.40	material.	LAY with some cobbles and boulders	S. FIII			
				2.40		ttom of test pit at 2.40 m.				

XCG Consulting Ltd. 100-4 Cataraqui Street Kingston, Ontario K7K 1Z7 (613) 542-5888

TEST PIT NUMBER TP19-8

PAGE 1 OF 1

CLIEN	IT ABNA	A Investme	nts			PROJECT NAME Phase II ESA	
PROJ	STARTED 07/16/19 COMPLETED 07/16/19 VATION CONTRACTOR Doornekamp Construction Ltd. VATION METHOD CAT305.5E2 ED BY GP CHECKED BY KPP S					PROJECT LOCATION 40 Sir John A Ma	acDonald Boulevard, Kingston
DATE	STARTE	D 07/16/1	9	COM	PLETED _07/16/19	GROUND ELEVATION TE	ST PIT SIZE
EXCA	VATION (CONTRACT	OR Doorn	ekamp	Construction Ltd.	GROUND WATER LEVELS:	
EXCA	VATION I	METHOD _	CAT305.5E2	2		AT TIME OF EXCAVATION	
LOGG	ED BY	GP		CHEC	CKED BY KPP	AT END OF EXCAVATION	
NOTE	s					AFTER EXCAVATION	
DEPTH (m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	ENVIRONMENTAL DATA	GRAPHIC LOG	M	ATERIAL DESCRIPTION	WELL DIAGRAM
 - 1 - 	GB 1				brown staining, no oc	ND with some clay. Some orange and dark dour.	
					В	ottom of test pit at 1./0 m.	

XCG Consulting Ltd. 100-4 Cataraqui Street Kingston, Ontario K7K 1Z7

TEST PIT NUMBER TP19-9

PAGE 1 OF 1

				(613) 542-	5888		
CLIEN	T ABN	A Investme	nts			PROJECT NAME Phase	e II ESA
PROJ	ECT NUM	IBER1-89	98-25-03			PROJECT LOCATION _4	0 Sir John A MacDonald Boulevard, Kingston
DATE	STARTE	D _07/16/1	9	COMI	PLETED 07/16/19	GROUND ELEVATION	TEST PIT SIZE
EXCA	VATION (CONTRACT	OR Doorn	ekamp	Construction Ltd.	GROUND WATER LEVELS:	
EXCA	VATION I	METHOD _	CAT305.5E	2		AT TIME OF EXCAVAT	ION
LOGG	ED BY	GP		CHEC	KED BY KPP		ON
NOTE	s					AFTER EXCAVATION	
(m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	ENVIRONMENTAL DATA	GRAPHIC LOG	MA	ATERIAL DESCRIPTION	WELL DIAGRAM
1	GB				Medium brown, dry S encountered. Orange	ock	
					Вс	ottom of test pit at 1.50 m.	

ENVIRONMENTAL BH 18982503 BOREHOLE LOGS.GPJ GINT STD CANADA.GDT 08/28/19

APPENDICES

APPENDIX C LABORATORY CERTIFICATES OF ANALYSIS

Final Report

C.O.C.: G70764 REPORT No. B19-18946 (i)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 25-Jun-19

DATE REPORTED: 04-Jul-19 SAMPLE MATRIX: Soil **Caduceon Environmental Laboratories**

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		MW19-1 6"-2'	MW19-2 4'- 6'9"	MW19-3 9"- 3'4"	MW19-3 20'- 21'
			Sample I.D.		B19-18946-1	B19-18946-2	B19-18946-3	B19-18946-4
			Date Collecte	ed	25-Jun-19	25-Jun-19	25-Jun-19	25-Jun-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
pH @25°C	pH Units		SM 4500H	02-Jul-19/O	7.77		7.89	7.67
Conductivity @25°C	mS/cm	0.001	SM 2510B	02-Jul-19/O	0.42		0.15	0.153
Chloride	μg/g	5	SM4110C	03-Jul-19/O	29		27	26
Sodium Adsorption Ratio	units		SM 3120	27-Jun-19/O	1.82		0.212	0.380
Antimony	μg/g	0.5	EPA 6020	28-Jun-19/O	0.8	0.5	< 0.5	< 0.5
Arsenic	μg/g	0.5	EPA 6020	28-Jun-19/O	4.9	4.7	4.5	4.6
Barium	μg/g	1	EPA 6010	28-Jun-19/O	278	275	154	132
Beryllium	μg/g	0.2	EPA 6010	28-Jun-19/O	1.0	0.7	0.5	0.5
Boron	μg/g	0.5	EPA 6010	28-Jun-19/O	13.8	14.4	16.6	16.9
Boron (HWS)	μg/g	0.02	MOE3470	27-Jun-19/O	0.25	0.28	0.23	0.23
Cadmium	μg/g	0.5	EPA 6010	28-Jun-19/O	< 0.5	0.7	< 0.5	< 0.5
Chromium	μg/g	1	EPA 6010	28-Jun-19/O	44	91	19	18
Chromium (VI)	μg/g	0.2	EPA7196A	28-Jun-19/O	< 0.2	< 0.2	< 0.2	< 0.2
Cobalt	μg/g	1	EPA 6010	28-Jun-19/O	19	12	9	9
Copper	μg/g	1	EPA 6010	28-Jun-19/O	39	77	25	27
Lead	μg/g	5	EPA 6010	28-Jun-19/O	191	84	83	63

R.L. = Reporting Limit

 $Site\ Analyzed:\ K-Kingston,\ W-Windsor,\ O-Ottawa,\ R-Richmond\ Hill, B-Barrie$

Uncertainty values available upon request

Final Report

C.O.C.: G70764 REPORT No. B19-18946 (i)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 25-Jun-19

DATE REPORTED: 04-Jul-19 SAMPLE MATRIX: Soil Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		MW19-1 6"-2'	MW19-2 4'- 6'9"	MW19-3 9"- 3'4"	MW19-3 20'- 21'
			Sample I.D.		B19-18946-1	B19-18946-2	B19-18946-3	B19-18946-4
			Date Collecte	ed	25-Jun-19	25-Jun-19	25-Jun-19	25-Jun-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Mercury	μg/g	0.005	EPA 7471A	28-Jun-19/O	0.077	0.501	0.050	0.057
Molybdenum	μg/g	1	EPA 6010	28-Jun-19/O	< 1	< 1	< 1	< 1
Nickel	μg/g	1	EPA 6010	28-Jun-19/O	33	23	18	18
Selenium	μg/g	0.5	EPA 6020	28-Jun-19/O	0.8	0.8	0.6	0.6
Silver	μg/g	0.2	EPA 6010	28-Jun-19/O	< 0.2	4.1	< 0.2	< 0.2
Thallium	μg/g	0.1	EPA 6020	28-Jun-19/O	0.3	0.2	0.3	0.3
Uranium	μg/g	0.1	EPA 6020	28-Jun-19/O	0.7	0.6	0.4	0.4
Vanadium	μg/g	1	EPA 6010	28-Jun-19/O	56	40	23	21
Zinc	μg/g	3	EPA 6010	28-Jun-19/O	144	139	65	57

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G70764 REPORT No. B19-18946 (i)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 25-Jun-19

DATE REPORTED: 04-Jul-19 SAMPLE MATRIX: Soil **Caduceon Environmental Laboratories**

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		MW19-4 2'- 3'8"		
			Sample I.D.		B19-18946-5		
			Date Collecte	ed	25-Jun-19		
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
pH @25°C	pH Units		SM 4500H	02-Jul-19/O	7.36		
Conductivity @25°C	mS/cm	0.001	SM 2510B	02-Jul-19/O	0.23		
Chloride	μg/g	5	SM4110C	03-Jul-19/O	27		
Sodium Adsorption Ratio	units		SM 3120	27-Jun-19/O	0.146		
Antimony	μg/g	0.5	EPA 6020	28-Jun-19/O	< 0.5		
Arsenic	μg/g	0.5	EPA 6020	28-Jun-19/O	3.7		
Barium	μg/g	1	EPA 6010	28-Jun-19/O	207		
Beryllium	μg/g	0.2	EPA 6010	28-Jun-19/O	1.0		
Boron	μg/g	0.5	EPA 6010	28-Jun-19/O	15.6		
Boron (HWS)	μg/g	0.02	MOE3470	27-Jun-19/O	0.27		
Cadmium	μg/g	0.5	EPA 6010	28-Jun-19/O	< 0.5		
Chromium	μg/g	1	EPA 6010	28-Jun-19/O	36		
Chromium (VI)	μg/g	0.2	EPA7196A	28-Jun-19/O	< 0.2		
Cobalt	μg/g	1	EPA 6010	28-Jun-19/O	15		
Copper	μg/g	1	EPA 6010	28-Jun-19/O	23		
Lead	μg/g	5	EPA 6010	28-Jun-19/O	47		

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill,B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G70764 REPORT No. B19-18946 (i)

Report To:

XCG Consulting Limited

4 Cataragui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 25-Jun-19

DATE REPORTED: 04-Jul-19

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		MW19-4 2'- 3'8"		
			Sample I.D.		B19-18946-5		
			Date Collecte	ed	25-Jun-19		
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Mercury	μg/g	0.005	EPA 7471A	28-Jun-19/O	0.104		
Molybdenum	μg/g	1	EPA 6010	28-Jun-19/O	< 1		
Nickel	μg/g	1	EPA 6010	28-Jun-19/O	29		
Selenium	μg/g	0.5	EPA 6020	28-Jun-19/O	0.8		
Silver	μg/g	0.2	EPA 6010	28-Jun-19/O	< 0.2		
Thallium	μg/g	0.1	EPA 6020	28-Jun-19/O	0.2		
Uranium	μg/g	0.1	EPA 6020	28-Jun-19/O	0.5		
Vanadium	μg/g	1	EPA 6010	28-Jun-19/O	42		
Zinc	μg/g	3	EPA 6010	28-Jun-19/O	72		

 $\mu g/g$ = micrograms per gram (parts per million) and is equal to mg/Kg

F1 C6-C10 hydrocarbons in µg/g, (F1-btex if requested)

F2 C10-C16 hydrocarbons in $\mu g/g$, (F2-napth if requested)

F3 C16-C34 hydrocarbons in μg/g, (F3-pah if requested)

F4 C34-C50 hydrocarbons in µg/g

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

Any deviations from the method are noted and reported for any particular sample.

nC6 and nC10 response factor is within 30% of response factor for toluene:

nC10,nC16 and nC34 response factors within 10% of each other:

C50 response factors within 70% of nC10+nC16+nC34 average:

Linearity is within 15%:

All results expressed on a dry weight basis.

Unless otherwise noted all chromatograms returned to baseline by the retention time of nC50.

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Unless otherwise noted all extraction, analysis, QC requirements and limits for holding time were met.

If analyzed for F4 and F4G they are not to be summed but the greater of the two numbers are to be used in application to the CWS PHC

QC will be made available upon request.

Final Report

C.O.C.: G70764 REPORT No. B19-18946 (ii)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 25-Jun-19

DATE REPORTED: 04-Jul-19 SAMPLE MATRIX: Soil **Caduceon Environmental Laboratories**

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		MW19-1 6"-2'	MW19-2 4'- 6'9"	MW19-3 9"- 3'4"	MW19-3 20'- 21'
			Sample I.D.		B19-18946-1	B19-18946-2	B19-18946-3	B19-18946-4
			Date Collected		25-Jun-19	25-Jun-19	25-Jun-19	25-Jun-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Acetone	μg/g	0.5	EPA 8260	27-Jun-19/R		< 0.5		
Benzene	μg/g	0.02	EPA 8260	27-Jun-19/R		< 0.02		
Bromodichloromethane	μg/g	0.02	EPA 8260	27-Jun-19/R		< 0.02		
Bromoform	μg/g	0.02	EPA 8260	27-Jun-19/R		< 0.02		
Bromomethane	μg/g	0.05	EPA 8260	27-Jun-19/R		< 0.05		
Carbon Tetrachloride	μg/g	0.05	EPA 8260	27-Jun-19/R		< 0.05		
Monochlorobenzene (Chlorobenzene)	μg/g	0.02	EPA 8260	27-Jun-19/R		< 0.02		
Chloroform	μg/g	0.02	EPA 8260	27-Jun-19/R		< 0.02		
Dibromochloromethane	μg/g	0.02	EPA 8260	27-Jun-19/R		< 0.02		
Dichlorobenzene,1,2-	μg/g	0.05	EPA 8260	27-Jun-19/R		< 0.05		
Dichlorobenzene,1,3-	μg/g	0.05	EPA 8260	27-Jun-19/R		< 0.05		
Dichlorobenzene,1,4-	μg/g	0.05	EPA 8260	27-Jun-19/R		< 0.05		
Dichlorodifluoromethane	μg/g	0.05	EPA 8260	27-Jun-19/R		< 0.05		
Dichloroethane,1,1-	μg/g	0.02	EPA 8260	27-Jun-19/R		< 0.02		
Dichloroethane,1,2-	μg/g	0.02	EPA 8260	27-Jun-19/R		< 0.02		
Dichloroethylene,1,1-	μg/g	0.02	EPA 8260	27-Jun-19/R		< 0.02		

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G70764 REPORT No. B19-18946 (ii)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 25-Jun-19

DATE REPORTED: 04-Jul-19 SAMPLE MATRIX: Soil **Caduceon Environmental Laboratories**

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		MW19-1 6"-2'	MW19-2 4'- 6'9"	MW19-3 9"- 3'4"	MW19-3 20'- 21'
			Sample I.D.		B19-18946-1	B19-18946-2	B19-18946-3	B19-18946-4
			Date Collect	ed	25-Jun-19	25-Jun-19	25-Jun-19	25-Jun-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Dichloroethene, cis-1,2-	μg/g	0.02	EPA 8260	27-Jun-19/R		< 0.02		
Dichloroethene, trans-1,2-	μg/g	0.02	EPA 8260	27-Jun-19/R		< 0.02		
Dichloropropane,1,2-	μg/g	0.02	EPA 8260	27-Jun-19/R		< 0.02		
Dichloropropene, cis-1,3-	μg/g	0.02	EPA 8260	27-Jun-19/R		< 0.02		
Dichloropropene, trans-1,3-	μg/g	0.02	EPA 8260	27-Jun-19/R		< 0.02		
Dichloropropene 1,3-cis+trans	μg/g	0.02	EPA 8260	27-Jun-19/R		< 0.02		
Ethylbenzene	μg/g	0.05	EPA 8260	27-Jun-19/R		< 0.05		
Dibromoethane,1,2- (Ethylene Dibromide)	μg/g	0.02	EPA 8260	27-Jun-19/R		< 0.02		
Hexane	μg/g	0.02	EPA 8260	27-Jun-19/R		< 0.02		
Methyl Ethyl Ketone	μg/g	0.5	EPA 8260	27-Jun-19/R		< 0.5		
Methyl Isobutyl Ketone	μg/g	0.5	EPA 8260	27-Jun-19/R		< 0.5		
Methyl-t-butyl Ether	μg/g	0.05	EPA 8260	27-Jun-19/R		< 0.05		
Dichloromethane (Methylene Chloride)	μg/g	0.05	EPA 8260	27-Jun-19/R		< 0.05		
Styrene	μg/g	0.05	EPA 8260	27-Jun-19/R		< 0.05		

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill,B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G70764 **REPORT No. B19-18946 (ii)**

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada

DATE RECEIVED: 25-Jun-19

DATE REPORTED: 04-Jul-19 SAMPLE MATRIX: Soil

Attention: Natalia Baranova

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		MW19-1 6"-2'	MW19-2 4'- 6'9"	MW19-3 9"- 3'4"	MW19-3 20'- 21'
			Sample I.D.		B19-18946-1	B19-18946-2	B19-18946-3	B19-18946-4
			Date Collecte	ed	25-Jun-19	25-Jun-19	25-Jun-19	25-Jun-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Tetrachloroethane,1,1,1,2-	μg/g	0.02	EPA 8260	27-Jun-19/R		< 0.02		
Tetrachloroethane,1,1,2,2-	μg/g	0.05	EPA 8260	27-Jun-19/R		< 0.05		
Tetrachloroethylene	μg/g	0.05	EPA 8260	27-Jun-19/R		< 0.05		
Toluene	μg/g	0.2	EPA 8260	27-Jun-19/R		< 0.2		
Trichloroethane,1,1,1-	μg/g	0.02	EPA 8260	27-Jun-19/R		< 0.02		
Trichloroethane,1,1,2-	μg/g	0.02	EPA 8260	27-Jun-19/R		< 0.02		
Trichloroethylene	μg/g	0.05	EPA 8260	27-Jun-19/R		< 0.05		
Trichlorofluoromethane	μg/g	0.02	EPA 8260	27-Jun-19/R		< 0.02		
Vinyl Chloride	μg/g	0.02	EPA 8260	27-Jun-19/R		< 0.02		
Xylene, m,p-	μg/g	0.03	EPA 8260	27-Jun-19/R		< 0.03		
Xylene, o-	μg/g	0.03	EPA 8260	27-Jun-19/R		< 0.03		
Xylene, m,p,o-	μg/g	0.03	EPA 8260	27-Jun-19/R		< 0.03		
PHC F1 (C6-C10)	μg/g	10	CWS Tier 1	27-Jun-19/R	< 10	< 10	< 10	< 10
PHC F2 (>C10-C16)	μg/g	5	CWS Tier 1	27-Jun-19/K	< 6	< 5	< 5	< 5
PHC F3 (>C16-C34)	μg/g	10	CWS Tier 1	27-Jun-19/K	< 10	14	< 10	< 10
PHC F4 (>C34-C50)	μg/g	10	CWS Tier 1	27-Jun-19/K	< 10	< 10	< 10	< 10

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G70764 REPORT No. B19-18946 (ii)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 25-Jun-19

DATE REPORTED: 04-Jul-19 SAMPLE MATRIX: Soil Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		MW19-1 6"-2'	MW19-2 4'- 6'9"	MW19-3 9"- 3'4"	MW19-3 20'- 21'
			Sample I.D.		B19-18946-1	B19-18946-2	B19-18946-3	B19-18946-4
			Date Collect	ed	25-Jun-19	25-Jun-19	25-Jun-19	25-Jun-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
% moisture	%			26-Jun-19/R	21.9	17.3	9.4	9.6

¹ Note: Elevated MDL due to high % moisture.

Michelle Dubien

R.L. = Reporting Limit Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill,B-Barrie Uncertainty values available upon request

Lab Manager

Final Report

C.O.C.: G70764 **REPORT No. B19-18946 (ii)**

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada Attention: Natalia Baranova

DATE REPORTED: 04-Jul-19 SAMPLE MATRIX: Soil

DATE RECEIVED: 25-Jun-19

Fax: 613-544-2770

Kingston Ontario K7K 6Z1 Tel: 613-544-2001

JOB/PROJECT NO.: 1-898-25-03

Caduceon Environmental Laboratories

P.O. NUMBER:

285 Dalton Ave

WATERWORKS NO.

			Client I.D.		MW19-4 2'- 3'8"		
			Sample I.D.		B19-18946-5		
			Date Collect	ed	25-Jun-19		
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Acetone	μg/g	0.5	EPA 8260	27-Jun-19/R	< 0.5		
Benzene	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Bromodichloromethane	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Bromoform	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Bromomethane	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Carbon Tetrachloride	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Monochlorobenzene (Chlorobenzene)	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Chloroform	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Dibromochloromethane	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Dichlorobenzene,1,2-	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Dichlorobenzene,1,3-	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Dichlorobenzene,1,4-	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Dichlorodifluoromethane	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Dichloroethane,1,1-	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Dichloroethane,1,2-	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Dichloroethylene,1,1-	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G70764 REPORT No. B19-18946 (ii)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 25-Jun-19

DATE REPORTED: 04-Jul-19 SAMPLE MATRIX: Soil Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER: WATERWORKS NO.

			Client I.D.		MW19-4 2'- 3'8"		
			Sample I.D.		B19-18946-5		
			Date Collect	ed	25-Jun-19		
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Dichloroethene, cis-1,2-	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Dichloroethene, trans-1,2-	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Dichloropropane,1,2-	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Dichloropropene, cis-1,3-	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Dichloropropene, trans-1,3-	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Dichloropropene 1,3- cis+trans	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Ethylbenzene	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Dibromoethane,1,2- (Ethylene Dibromide)	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Hexane	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Methyl Ethyl Ketone	μg/g	0.5	EPA 8260	27-Jun-19/R	< 0.5		
Methyl Isobutyl Ketone	μg/g	0.5	EPA 8260	27-Jun-19/R	< 0.5		
Methyl-t-butyl Ether	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Dichloromethane (Methylene Chloride)	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Styrene	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G70764 REPORT No. B19-18946 (ii)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 25-Jun-19

DATE REPORTED: 04-Jul-19 SAMPLE MATRIX: Soil **Caduceon Environmental Laboratories**

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER: WATERWORKS NO.

			Client I.D.		MW19-4 2'- 3'8"		
			Samula I D				
			Sample I.D.	_	B19-18946-5		
			Date Collecte	ed	25-Jun-19		
Parameter	Unito	D.	Reference	Date/Site			
	Units	R.L.	Method	Analyzed		<u> </u>	
Tetrachloroethane,1,1,1,2-	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Tetrachloroethane,1,1,2,2-	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Tetrachloroethylene	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Toluene	μg/g	0.2	EPA 8260	27-Jun-19/R	< 0.2		
Trichloroethane,1,1,1-	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Trichloroethane,1,1,2-	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Trichloroethylene	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Trichlorofluoromethane	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Vinyl Chloride	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Xylene, m,p-	μg/g	0.03	EPA 8260	27-Jun-19/R	< 0.03		
Xylene, o-	μg/g	0.03	EPA 8260	27-Jun-19/R	< 0.03		
Xylene, m,p,o-	μg/g	0.03	EPA 8260	27-Jun-19/R	< 0.03		
PHC F1 (C6-C10)	μg/g	10	CWS Tier 1	27-Jun-19/R	< 10		
PHC F2 (>C10-C16)	μg/g	5	CWS Tier 1	27-Jun-19/K	< 5		
PHC F3 (>C16-C34)	μg/g	10	CWS Tier 1	27-Jun-19/K	< 10		
PHC F4 (>C34-C50)	μg/g	10	CWS Tier 1	27-Jun-19/K	< 10		

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill,B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G70764 REPORT No. B19-18946 (ii)

Report To:

XCG Consulting Limited

4 Cataragui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 25-Jun-19

DATE REPORTED: 04-Jul-19 SAMPLE MATRIX: Soil Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		MW19-4 2'- 3'8"		
			Sample I.D.		B19-18946-5		
			Date Collect	ed	25-Jun-19		
Parameter	Units	R.L.	Reference Date/Site Method Analyzed				
% moisture	%		26-Jun-19/R		23.2		

¹ Note: Elevated MDL due to high % moisture.

 $\mu g/g$ = micrograms per gram (parts per million) and is equal to mg/Kg

F1 C6-C10 hydrocarbons in µg/g, (F1-btex if requested)

F2 C10-C16 hydrocarbons in µg/g, (F2-napth if requested)

F3 C16-C34 hydrocarbons in μg/g, (F3-pah if requested)

F4 C34-C50 hydrocarbons in µg/g

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

Any deviations from the method are noted and reported for any particular sample.

nC6 and nC10 response factor is within 30% of response factor for toluene:

nC10,nC16 and nC34 response factors within 10% of each other:

C50 response factors within 70% of nC10+nC16+nC34 average:

Linearity is within 15%:

All results expressed on a dry weight basis.

Unless otherwise noted all chromatograms returned to baseline by the retention time of nC50.

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Unless otherwise noted all extraction, analysis, QC requirements and limits for holding time were met. If analyzed for F4 and F4G they are not to be summed but the greater of the two numbers are to be used in application to the

QC will be made available upon request.

ČWS PHC

Michelle Dubien Lab Manager

The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from

Final Report

C.O.C.: G70764 REPORT No. B19-18946 (iii)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 25-Jun-19

DATE REPORTED: 04-Jul-19 SAMPLE MATRIX: Soil **Caduceon Environmental Laboratories**

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER: WATERWORKS NO.

			Client I.D.		MW19-3 9"- 3'4"	MW19-3 20'- 21'	MW19-4 2'- 3'8"		
			Sample I.D.		B19-18946-3	B19-18946-4	B19-18946-5		
			Date Collect	ed	25-Jun-19	25-Jun-19 25-Jun-19 25-Jun-19			
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed					
Acenaphthene	μg/g	0.05	EPA 8270	28-Jun-19/K	< 0.05	< 0.05	< 0.05		
Acenaphthylene	μg/g	0.05	EPA 8270	28-Jun-19/K	< 0.05	< 0.05	< 0.05		
Anthracene	μg/g	0.05	EPA 8270	28-Jun-19/K	< 0.05	< 0.05	< 0.05		
Benzo(a)anthracene	μg/g	0.05	EPA 8270	28-Jun-19/K	< 0.05	< 0.05	< 0.05		
Benzo(a)pyrene	μg/g	0.05	EPA 8270	28-Jun-19/K	< 0.05	< 0.05	< 0.05		
Benzo(b)fluoranthene	μg/g	0.05	EPA 8270	28-Jun-19/K	< 0.05	< 0.05	< 0.05		
Benzo(b+k)fluoranthene	μg/g	0.05	EPA 8270	28-Jun-19/K	0.06	< 0.05	< 0.05		
Benzo(g,h,i)perylene	μg/g	0.05	EPA 8270	28-Jun-19/K	< 0.05	< 0.05	< 0.05		
Benzo(k)fluoranthene	μg/g	0.05	EPA 8270	28-Jun-19/K	< 0.05	< 0.05	< 0.05		
Chrysene	μg/g	0.05	EPA 8270	28-Jun-19/K	< 0.05	< 0.05	< 0.05		
Dibenzo(a,h)anthracene	μg/g	0.05	EPA 8270	28-Jun-19/K	< 0.05	< 0.05	< 0.05		
Fluoranthene	μg/g	0.05	EPA 8270	28-Jun-19/K	0.06	< 0.05	< 0.05		
Fluorene	μg/g	0.05	EPA 8270	28-Jun-19/K	< 0.05	< 0.05	< 0.05		
Indeno(1,2,3,-cd)pyrene	μg/g	0.05	EPA 8270	28-Jun-19/K	< 0.05	< 0.05	< 0.05		
Methylnaphthalene,1-	μg/g	0.05	EPA 8270	28-Jun-19/K	< 0.05	< 0.05	< 0.05		
Methylnaphthalene,2-	μg/g	0.05	EPA 8270	28-Jun-19/K	< 0.05	< 0.05	< 0.05		

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill,B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G70764 **REPORT No. B19-18946 (iii)**

Report To:

XCG Consulting Limited

4 Cataragui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada Attention: Natalia Baranova

DATE RECEIVED: 25-Jun-19

DATE REPORTED: 04-Jul-19 SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		MW19-3 9"- 3'4"	MW19-3 20'- 21'	MW19-4 2'- 3'8"
			Sample I.D.		B19-18946-3	B19-18946-4	B19-18946-5
			Date Collect	ed	25-Jun-19	25-Jun-19	25-Jun-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Methylnaphthalene 2-(1-)	μg/g	0.05	EPA 8270	28-Jun-19/K	< 0.05	< 0.05	< 0.05
Naphthalene	μg/g	0.05	EPA 8270	28-Jun-19/K	< 0.05	< 0.05	< 0.05
Phenanthrene	μg/g	0.05	EPA 8270	28-Jun-19/K	< 0.05	< 0.05	< 0.05
Pyrene	μg/g	0.05	EPA 8270	28-Jun-19/K	< 0.05	< 0.05	< 0.05

μg/g = micrograms per gram (parts per million) and is equal to mg/Kg

F1 C6-C10 hydrocarbons in µg/g, (F1-btex if requested)

F2 C10-C16 hydrocarbons in $\mu g/g$, (F2-napth if requested) F3 C16-C34 hydrocarbons in $\mu g/g$, (F3-pah if requested)

F4 C34-C50 hydrocarbons in µg/g

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

Any deviations from the method are noted and reported for any particular sample.

nC6 and nC10 response factor is within 30% of response factor for toluene:

nC10,nC16 and nC34 response factors within 10% of each other:

C50 response factors within 70% of nC10+nC16+nC34 average:

Linearity is within 15%:

All results expressed on a dry weight basis.

Unless otherwise noted all chromatograms returned to baseline by the retention time of nC50.

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Unless otherwise noted all extraction, analysis, QC requirements and limits for holding time were met.

If analyzed for F4 and F4G they are not to be summed but the greater of the two numbers are to be used in application to the **ČWS PHC**

QC will be made available upon request.

Michelle Dubien Lab Manager

The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from

Final Report

C.O.C.: G70765 REPORT No. B19-19072 (i)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 26-Jun-19

DATE REPORTED: 08-Jul-19 SAMPLE MATRIX: Soil Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER: WATERWORKS NO.

			Client I.D.		MW19-5 9"- 3'4"	MW19-6 0'- 1'6"	
			Sample I.D.		B19-19072-1	B19-19072-2	
			Date Collected		26-Jun-19	26-Jun-19	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
pH @25°C	pH Units		SM 4500H	02-Jul-19/O	7.59	7.92	
Conductivity @25°C	mS/cm	0.001	SM 2510B	02-Jul-19/O	0.218	0.96	
Chloride	μg/g	5	SM4110C	06-Jul-19/O	5	8	
Sodium Adsorption Ratio	units		SM 3120	28-Jun-19/O	0.284	0.627	
Antimony	μg/g	0.5	EPA 6020	28-Jun-19/O	< 0.5	< 0.5	
Arsenic	μg/g	0.5	EPA 6020	28-Jun-19/O	3.6	2.1	
Barium	μg/g	1	EPA 6010	28-Jun-19/O	251	190	
Beryllium	μg/g	0.2	EPA 6010	28-Jun-19/O	0.9	0.2	
Boron	μg/g	0.5	EPA 6010	28-Jun-19/O	12.5	15.4	
Boron (HWS)	μg/g	0.02	MOE3470	28-Jun-19/O	0.21	0.28	
Cadmium	μg/g	0.5	EPA 6010	28-Jun-19/O	< 0.5	< 0.5	
Chromium	μg/g	1	EPA 6010	28-Jun-19/O	39	9	
Chromium (VI)	μg/g	0.2	EPA7196A	28-Jun-19/O	< 0.2	< 0.2	
Cobalt	μg/g	1	EPA 6010	28-Jun-19/O	17	5	
Copper	μg/g	1	EPA 6010	28-Jun-19/O	32	18	
Lead	μg/g	5	EPA 6010	28-Jun-19/O	76	66	

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Richard Lecompte Laboratory Supervisor

R. Jean Jo

Final Report

C.O.C.: G70765 REPORT No. B19-19072 (i)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 26-Jun-19

DATE REPORTED: 08-Jul-19 SAMPLE MATRIX: Soil Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		MW19-5 9"- 3'4"	MW19-6 0'- 1'6"	
			Sample I.D.		B19-19072-1	B19-19072-2	
			Date Collecte	ed	26-Jun-19	26-Jun-19	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Mercury	μg/g	0.005	EPA 7471A	28-Jun-19/O	0.061	0.032	
Molybdenum	μg/g	1	EPA 6010	28-Jun-19/O	< 1	< 1	
Nickel	μg/g	1	EPA 6010	28-Jun-19/O	29	11	
Selenium	μg/g	0.5	EPA 6020	28-Jun-19/O	< 0.5	< 0.5	
Silver	μg/g	0.2	EPA 6010	28-Jun-19/O	< 0.2	< 0.2	
Thallium	μg/g	0.1	EPA 6020	28-Jun-19/O	0.2	0.2	
Uranium	μg/g	0.1	EPA 6020	28-Jun-19/O	0.4	0.3	
Vanadium	μg/g	1	EPA 6010	28-Jun-19/O	53	13	
Zinc	μg/g	3	EPA 6010	28-Jun-19/O	102	28	

 $\mu g/g$ = micrograms per gram (parts per million) and is equal to mg/Kg

F1 C6-C10 hydrocarbons in µg/g, (F1-btex if requested)

F2 C10-C16 hydrocarbons in µg/g, (F2-napth if requested)

F3 C16-C34 hydrocarbons in µg/g, (F3-pah if requested)

F4 C34-C50 hydrocarbons in µg/g

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

Any deviations from the method are noted and reported for any particular sample.

nC6 and nC10 response factor is within 30% of response factor for toluene:

nC10,nC16 and nC34 response factors within 10% of each other:

C50 response factors within 70% of nC10+nC16+nC34 average:

Linearity is within 15%:

All results expressed on a dry weight basis.

Unless otherwise noted all chromatograms returned to baseline by the retention time of nC50.

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Unless otherwise noted all extraction, analysis, QC requirements and limits for holding time were met.

If analyzed for F4 and F4G they are not to be summed but the greater of the two numbers are to be used in application to the CWS PHC

R. Jeco Jo

QC will be made available upon request.

Richard Lecompte Laboratory Supervisor

The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from

Final Report

C.O.C.: G70765 REPORT No. B19-19072 (ii)

Report To:

XCG Consulting Limited

4 Cataragui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 26-Jun-19

DATE REPORTED: 08-Jul-19 SAMPLE MATRIX: Soil Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		MW19-5 9"- 3'4"	MW19-6 0'- 1'6"	
			Sample I.D.		B19-19072-1	B19-19072-2	
			Date Collecte	ed	26-Jun-19	26-Jun-19	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
PHC F1 (C6-C10)	μg/g	10	CWS Tier 1	28-Jun-19/R	< 10	< 10	
PHC F2 (>C10-C16)	μg/g	5	CWS Tier 1	27-Jun-19/K	< 5	< 5	
PHC F3 (>C16-C34)	μg/g	10	CWS Tier 1	27-Jun-19/K	< 10	29	
PHC F4 (>C34-C50)	µg/g	10	CWS Tier 1	27-Jun-19/K	< 10	34	
PHC F4 (Gravimetric)	μg/g	50	CWS Tier 1	02-Jul-19/K		580	
% moisture	%			26-Jun-19/R	20.5	5.1	

¹ Note: Chromat did not return to baseline F4G requ

 $\mu g/g$ = micrograms per gram (parts per million) and is equal to mg/Kg

F1 C6-C10 hydrocarbons in μg/g, (F1-btex if requested)

F2 C10-C16 hydrocarbons in µg/g, (F2-napth if requested)

F3 C16-C34 hydrocarbons in µg/g, (F3-pah if requested)

F4 C34-C50 hydrocarbons in µg/g

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

Any deviations from the method are noted and reported for any particular sample. nC6 and nC10 response factor is within 30% of response factor for toluene:

nC10,nC16 and nC34 response factors within 10% of each other:

C50 response factors within 70% of nC10+nC16+nC34 average:

Linearity is within 15%:

All results expressed on a dry weight basis.

Unless otherwise noted all chromatograms returned to baseline by the retention time of nC50.

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Unless otherwise noted all extraction, analysis, QC requirements and limits for holding time were met.

If analyzed for F4 and F4G they are not to be summed but the greater of the two numbers are to be used in application to the CWS PHC

R. Jeco Jo

QC will be made available upon request.

Richard Lecompte Laboratory Supervisor

Final Report

REPORT No. B19-20286 C.O.C.: G70765

Report To:

XCG Consulting Limited

4 Cataragui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada Attention: Natalia Baranova

DATE RECEIVED: 08-Jul-19

DATE REPORTED: 15-Jul-19 SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		MW19-6 6'-8'		
			Sample I.D.		B19-20286-1		
			Date Collected		26-Jun-19		
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Conductivity @25°C	mS/cm	0.001	SM 2510B	12-Jul-19/O	0.375		
Sodium Adsorption Ratio	units		SM 3120	12-Jul-19/O	0.80		

μg/g = micrograms per gram (parts per million) and is equal to mg/Kg

F1 C6-C10 hydrocarbons in µg/g, (F1-btex if requested)

F2 C10-C16 hydrocarbons in $\mu g/g$, (F2-napth if requested) F3 C16-C34 hydrocarbons in $\mu g/g$, (F3-pah if requested)

F4 C34-C50 hydrocarbons in µg/g

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

Any deviations from the method are noted and reported for any particular sample.

nC6 and nC10 response factor is within 30% of response factor for toluene:

nC10,nC16 and nC34 response factors within 10% of each other:

C50 response factors within 70% of nC10+nC16+nC34 average:

Linearity is within 15%:

All results expressed on a dry weight basis.

Unless otherwise noted all chromatograms returned to baseline by the retention time of nC50.

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Unless otherwise noted all extraction, analysis, QC requirements and limits for holding time were met. If analyzed for F4 and F4G they are not to be summed but the

greater of the two numbers are to be used in application to the **ČWS PHC**

QC will be made available upon request.

Final Report

C.O.C.: G70764 REPORT No. B19-20294

Client I.D.

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 08-Jul-19

DATE REPORTED: 09-Jul-19 SAMPLE MATRIX: Soil Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER: WATERWORKS NO.

> MW19-3 9"-3'4'

					34		
			Sample I.D.		B19-20294-1		
			Date Collect	ed	25-Jun-19		
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Acetone	μg/g	0.5	EPA 8260	27-Jun-19/R	2.7		
Benzene	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Bromodichloromethane	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Bromoform	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Bromomethane	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Carbon Tetrachloride	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Monochlorobenzene (Chlorobenzene)	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Chloroform	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Dibromochloromethane	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Dichlorobenzene,1,2-	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Dichlorobenzene,1,3-	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Dichlorobenzene,1,4-	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Dichlorodifluoromethane	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Dichloroethane,1,1-	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Dichloroethane,1,2-	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Dichloroethylene,1,1-	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Dichloroethene, cis-1,2-	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Dichloroethene, trans-1,2-	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Dichloropropane,1,2-	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Dichloropropene, cis-1,3-	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Dichloropropene, trans-1,3-	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Dichloropropene 1,3-cis+trans	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Ethylbenzene	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Dibromoethane,1,2- (Ethylene Dibromide)	µg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Richard Lecompte
Laboratory Supervisor

R. Lean Jo

Final Report

C.O.C.: G70764 **REPORT No. B19-20294**

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 08-Jul-19

DATE REPORTED: 09-Jul-19 SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		MW19-3 9"- 3'4'		
			Sample I.D.		B19-20294-1		
			Date Collecte	ed	25-Jun-19		
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Hexane	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Methyl Ethyl Ketone	μg/g	0.5	EPA 8260	27-Jun-19/R	< 0.5		
Methyl Isobutyl Ketone	μg/g	0.5	EPA 8260	27-Jun-19/R	< 0.5		
Methyl-t-butyl Ether	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Dichloromethane (Methylene Chloride)	µg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Styrene	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Tetrachloroethane,1,1,1,2-	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Tetrachloroethane,1,1,2,2-	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Tetrachloroethylene	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Toluene	μg/g	0.2	EPA 8260	27-Jun-19/R	< 0.2		
Trichloroethane,1,1,1-	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Trichloroethane,1,1,2-	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Trichloroethylene	μg/g	0.05	EPA 8260	27-Jun-19/R	< 0.05		
Trichlorofluoromethane	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Vinyl Chloride	μg/g	0.02	EPA 8260	27-Jun-19/R	< 0.02		
Xylene, m,p-	μg/g	0.03	EPA 8260	27-Jun-19/R	< 0.03		
Xylene, o-	μg/g	0.03	EPA 8260	27-Jun-19/R	< 0.03		
Xylene, m,p,o-	μg/g	0.03	EPA 8260	27-Jun-19/R	< 0.03		

R. Lean Jo

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *

Richard Lecompte Laboratory Supervisor

Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G70764 REPORT No. B19-20317 (i)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 08-Jul-19

DATE REPORTED: 15-Jul-19 SAMPLE MATRIX: Soil **Caduceon Environmental Laboratories**

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		MW19-1 13'3"-16'6"	MW19-2 7'3"- 10'	
			Sample I.D.		B19-20317-1	B19-20317-2	
			Date Collecte	ed	25-Jun-19	25-Jun-19	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Antimony	μg/g	0.5	EPA 6020	12-Jul-19/O	< 0.5	< 0.5	
Arsenic	μg/g	0.5	EPA 6020	12-Jul-19/O	2.9	3.0	
Barium	μg/g	1	EPA 6010	12-Jul-19/O	322	157	
Beryllium	μg/g	0.2	EPA 6010	12-Jul-19/O	1.2	0.8	
Boron	μg/g	0.5	EPA 6010	12-Jul-19/O	5.5	7.5	
Cadmium	μg/g	0.5	EPA 6010	12-Jul-19/O	< 0.5	< 0.5	
Chromium	μg/g	1	EPA 6010	12-Jul-19/O	50	31	
Cobalt	μg/g	1	EPA 6010	12-Jul-19/O	21	13	
Copper	μg/g	1	EPA 6010	12-Jul-19/O	29	15	
Lead	μg/g	5	EPA 6010	12-Jul-19/O	12	18	
Mercury	μg/g	0.005	EPA 7471A	12-Jul-19/O	0.020	0.074	
Molybdenum	μg/g	1	EPA 6010	12-Jul-19/O	< 1	< 1	
Nickel	μg/g	1	EPA 6010	12-Jul-19/O	37	21	
Selenium	μg/g	0.5	EPA 6020	12-Jul-19/O	0.7	0.7	
Silver	μg/g	0.2	EPA 6010	12-Jul-19/O	< 0.2	< 0.2	
Thallium	μg/g	0.1	EPA 6020	12-Jul-19/O	0.3	0.2	

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill,B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G70764 REPORT No. B19-20317 (i)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 08-Jul-19

DATE REPORTED: 15-Jul-19 SAMPLE MATRIX: Soil Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER: WATERWORKS NO.

			Client I.D.		MW19-1 13'3"-16'6"	MW19-2 7'3"- 10'	
			Sample I.D.		B19-20317-1	B19-20317-2	
			Date Collect	ed	25-Jun-19	25-Jun-19	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Uranium	μg/g	0.1	EPA 6020	12-Jul-19/O	0.5	0.5	
Vanadium	μg/g	1	EPA 6010	12-Jul-19/O	69	42	
Zinc	μg/g	3	EPA 6010	12-Jul-19/O	94	53	

 μ g/g = micrograms per gram (parts per million) and is equal to mg/Kg

F1 C6-C10 hydrocarbons in µg/g, (F1-btex if requested)

F2 C10-C16 hydrocarbons in $\mu g/g$, (F2-napth if requested)

F3 C16-C34 hydrocarbons in μg/g, (F3-pah if requested)

F4 C34-C50 hydrocarbons in µg/g

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

Any deviations from the method are noted and reported for any particular sample.

nC6 and nC10 response factor is within 30% of response factor for toluene:

nC10,nC16 and nC34 response factors within 10% of each other:

C50 response factors within 70% of nC10+nC16+nC34 average:

Linearity is within 15%:

All results expressed on a dry weight basis.

Unless otherwise noted all chromatograms returned to baseline by the retention time of nC50.

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Unless otherwise noted all extraction, analysis, QC requirements and limits for holding time were met. If analyzed for F4 and F4G they are not to be summed

If analyzed for F4 and F4G they are not to be summed but the greater of the two numbers are to be used in application to the CWS PHC

QC will be made available upon request.

Michelle Dubien Lab Manager

The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from

Final Report

C.O.C.: G70764 REPORT No. B19-20317 (ii)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 08-Jul-19

DATE REPORTED: 15-Jul-19 SAMPLE MATRIX: Soil Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER: WATERWORKS NO.

			Client I.D.		MW19-2 7'3"- 10'	MW19-3 6'6"- 8'	
			Sample I.D.		B19-20317-2	B19-20317-3	
			Date Collecte	ed	25-Jun-19	25-Jun-19	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Acetone	μg/g	0.5	EPA 8260	10-Jul-19/R	< 0.5	< 0.5	
Benzene	μg/g	0.02	EPA 8260	10-Jul-19/R	< 0.02	< 0.02	
Bromodichloromethane	μg/g	0.02	EPA 8260	10-Jul-19/R	< 0.02	< 0.02	
Bromoform	μg/g	0.02	EPA 8260	10-Jul-19/R	< 0.02	< 0.02	
Bromomethane	μg/g	0.05	EPA 8260	10-Jul-19/R	< 0.05	< 0.05	
Carbon Tetrachloride	μg/g	0.05	EPA 8260	10-Jul-19/R	< 0.05	< 0.05	
Monochlorobenzene (Chlorobenzene)	μg/g	0.02	EPA 8260	10-Jul-19/R	< 0.02	< 0.02	
Chloroform	μg/g	0.02	EPA 8260	10-Jul-19/R	< 0.02	< 0.02	
Dibromochloromethane	μg/g	0.02	EPA 8260	10-Jul-19/R	< 0.02	< 0.02	
Dichlorobenzene,1,2-	μg/g	0.05	EPA 8260	10-Jul-19/R	< 0.05	< 0.05	
Dichlorobenzene,1,3-	μg/g	0.05	EPA 8260	10-Jul-19/R	< 0.05	< 0.05	
Dichlorobenzene,1,4-	μg/g	0.05	EPA 8260	10-Jul-19/R	< 0.05	< 0.05	
Dichlorodifluoromethane	μg/g	0.05	EPA 8260	10-Jul-19/R	< 0.05	< 0.05	
Dichloroethane,1,1-	μg/g	0.02	EPA 8260	10-Jul-19/R	< 0.02	< 0.02	
Dichloroethane,1,2-	μg/g	0.02	EPA 8260	10-Jul-19/R	< 0.02	< 0.02	
Dichloroethylene,1,1-	μg/g	0.02	EPA 8260	10-Jul-19/R	< 0.02	< 0.02	

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill,B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G70764 REPORT No. B19-20317 (ii)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 08-Jul-19

DATE REPORTED: 15-Jul-19 SAMPLE MATRIX: Soil Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER: WATERWORKS NO.

			Client I.D.		MW19-2 7'3"- 10'	MW19-3 6'6"- 8'	
			Sample I.D.		B19-20317-2	B19-20317-3	
			Date Collect	ed	25-Jun-19	25-Jun-19	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Dichloroethene, cis-1,2-	μg/g	0.02	EPA 8260	10-Jul-19/R	< 0.02	< 0.02	
Dichloroethene, trans-1,2-	μg/g	0.02	EPA 8260	10-Jul-19/R	< 0.02	< 0.02	
Dichloropropane,1,2-	μg/g	0.02	EPA 8260	10-Jul-19/R	< 0.02	< 0.02	
Dichloropropene, cis-1,3-	μg/g	0.02	EPA 8260	10-Jul-19/R	< 0.02	< 0.02	
Dichloropropene, trans-1,3-	μg/g	0.02	EPA 8260	10-Jul-19/R	< 0.02	< 0.02	
Dichloropropene 1,3-cis+trans	μg/g	0.02	EPA 8260	10-Jul-19/R	< 0.02	< 0.02	
Ethylbenzene	μg/g	0.05	EPA 8260	10-Jul-19/R	< 0.05	< 0.05	
Dibromoethane,1,2- (Ethylene Dibromide)	μg/g	0.02	EPA 8260	10-Jul-19/R	< 0.02	< 0.02	
Hexane	μg/g	0.02	EPA 8260	10-Jul-19/R	< 0.02	< 0.02	
Methyl Ethyl Ketone	μg/g	0.5	EPA 8260	10-Jul-19/R	< 0.5	< 0.5	
Methyl Isobutyl Ketone	μg/g	0.5	EPA 8260	10-Jul-19/R	< 0.5	< 0.5	
Methyl-t-butyl Ether	μg/g	0.05	EPA 8260	10-Jul-19/R	< 0.05	< 0.05	
Dichloromethane	μg/g	0.05	EPA 8260	10-Jul-19/R	< 0.05	< 0.05	

10-Jul-19/R

< 0.05

< 0.05

R.L. = Reporting Limit

(Methylene Chloride)

Styrene

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill,B-Barrie

μg/g

0.05

EPA 8260

Uncertainty values available upon request

Final Report

C.O.C.: G70764 REPORT No. B19-20317 (ii)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 08-Jul-19

DATE REPORTED: 15-Jul-19 SAMPLE MATRIX: Soil Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		MW19-2 7'3"- 10'	MW19-3 6'6"- 8'	
			Sample I.D.		B19-20317-2	B19-20317-3	
			Date Collecte	ed	25-Jun-19	25-Jun-19	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Tetrachloroethane,1,1,1,2-	μg/g	0.02	EPA 8260	10-Jul-19/R	< 0.02	< 0.02	
Tetrachloroethane,1,1,2,2-	μg/g	0.05	EPA 8260	10-Jul-19/R	< 0.05	< 0.05	
Tetrachloroethylene	μg/g	0.05	EPA 8260	10-Jul-19/R	< 0.05	< 0.05	
Toluene	μg/g	0.2	EPA 8260	10-Jul-19/R	< 0.2	< 0.2	
Trichloroethane,1,1,1-	μg/g	0.02	EPA 8260	10-Jul-19/R	< 0.02	< 0.02	
Trichloroethane,1,1,2-	μg/g	0.02	EPA 8260	10-Jul-19/R	< 0.02	< 0.02	
Trichloroethylene	μg/g	0.05	EPA 8260	10-Jul-19/R	< 0.05	< 0.05	
Trichlorofluoromethane	μg/g	0.02	EPA 8260	10-Jul-19/R	< 0.02	< 0.02	
Vinyl Chloride	μg/g	0.02	EPA 8260	10-Jul-19/R	< 0.02	< 0.02	
Xylene, m,p-	μg/g	0.03	EPA 8260	10-Jul-19/R	< 0.03	< 0.03	
Xylene, o-	μg/g	0.03	EPA 8260	10-Jul-19/R	< 0.03	< 0.03	
Xylene, m,p,o-	μg/g	0.03	EPA 8260	10-Jul-19/R	< 0.03	< 0.03	
PHC F1 (C6-C10)	μg/g	10	CWS Tier 1	10-Jul-19/R	< 10		
PHC F2 (>C10-C16)	μg/g	5	CWS Tier 1	11-Jul-19/K	< 6	1	
PHC F3 (>C16-C34)	μg/g	10	CWS Tier 1	11-Jul-19/K	11		
PHC F4 (>C34-C50)	μg/g	10	CWS Tier 1	11-Jul-19/K	< 10		

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G70764 REPORT No. B19-20317 (ii)

Report To:

XCG Consulting Limited

4 Cataragui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 08-Jul-19

DATE REPORTED: 15-Jul-19 SAMPLE MATRIX: Soil Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		MW19-2 7'3"- 10'	MW19-3 6'6"- 8'	
			Sample I.D.		B19-20317-2	B19-20317-3	
			Date Collect	ed	25-Jun-19	25-Jun-19	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
% moisture	%		10-Jul-19/R		22.7	24.7	

¹ Note: Elevated MDL due to high % moisture.

 $\mu g/g$ = micrograms per gram (parts per million) and is equal to mg/Kg

F1 C6-C10 hydrocarbons in μg/g, (F1-btex if requested)

F2 C10-C16 hydrocarbons in $\mu g/g$, (F2-napth if requested)

F3 C16-C34 hydrocarbons in μg/g, (F3-pah if requested)

F4 C34-C50 hydrocarbons in µg/g

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

Any deviations from the method are noted and reported for any particular sample.

nC6 and nC10 response factor is within 30% of response factor for toluene:

nC10,nC16 and nC34 response factors within 10% of each other:

C50 response factors within 70% of nC10+nC16+nC34 average:

Linearity is within 15%:

All results expressed on a dry weight basis.

Unless otherwise noted all chromatograms returned to baseline by the retention time of nC50.

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Unless otherwise noted all extraction, analysis, QC requirements and limits for holding time were met. If analyzed for F4 and F4G they are not to be summed but the greater of the two numbers are to be used in application to the

QC will be made available upon request.

ČWS PHC

Final Report

C.O.C.: G80008 **REPORT No. B19-21395 (i)**

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada Attention: Natalia Baranova

DATE RECEIVED: 15-Jul-19

DATE REPORTED: 25-Jul-19 SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		TP19-6 (2m)	TP19-7 (2m)	Duplicate-2	TP19-6 (2m North)
			Sample I.D.		B19-21395-2	B19-21395-3	B19-21395-5	B19-21395-6
			Date Collecte	ed	15-Jul-19	15-Jul-19	15-Jul-19	15-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
pH @25°C	pH Units		SM 4500H	22-Jul-19/O	7.27	7.05		
Conductivity @25°C	mS/cm	0.001	SM 2510B	22-Jul-19/O	0.16	0.265		
Sodium Adsorption Ratio	units		SM 3120	24-Jul-19/O	0.794	1.46		
Antimony	μg/g	0.5	EPA 6020	24-Jul-19/O	< 0.5	< 0.5	< 0.5	< 0.5
Arsenic	μg/g	0.5	EPA 6020	24-Jul-19/O	3.1	3.8	2.9	3.8
Barium	μg/g	1	EPA 6010	24-Jul-19/O	140	179	133	135
Beryllium	μg/g	0.2	EPA 6010	24-Jul-19/O	0.6	0.8	0.7	0.6
Boron	μg/g	0.5	EPA 6010	24-Jul-19/O	9.8	10.7	9.9	11.5
Boron (HWS)	μg/g	0.02	MOE3470	24-Jul-19/O	0.44	0.43	0.44	0.44
Cadmium	μg/g	0.5	EPA 6010	24-Jul-19/O	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	μg/g	1	EPA 6010	24-Jul-19/O	26	32	28	29
Chromium (VI)	μg/g	0.2	EPA7196A	22-Jul-19/O	< 0.2	< 0.2	< 0.2	< 0.2
Cobalt	μg/g	1	EPA 6010	24-Jul-19/O	11	12	12	12
Copper	μg/g	1	EPA 6010	24-Jul-19/O	20	23	17	16
Lead	μg/g	5	EPA 6010	24-Jul-19/O	52	34	17	56
Mercury	μg/g	0.005	EPA 7471A	23-Jul-19/O	0.123	0.096	0.063	0.087

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G80008 REPORT No. B19-21395 (i)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 15-Jul-19

DATE REPORTED: 25-Jul-19

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		TP19-6 (2m)	TP19-7 (2m)	Duplicate-2	TP19-6 (2m North)
			Sample I.D.		B19-21395-2	B19-21395-3	B19-21395-5	B19-21395-6
			Date Collect	ed	15-Jul-19	15-Jul-19	15-Jul-19	15-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Molybdenum	μg/g	1	EPA 6010	24-Jul-19/O	< 1	< 1	< 1	< 1
Nickel	μg/g	1	EPA 6010	24-Jul-19/O	19	24	20	20
Selenium	μg/g	0.5	EPA 6020	24-Jul-19/O	0.6	0.8	0.6	0.6
Silver	μg/g	0.2	EPA 6010	24-Jul-19/O	< 0.2	< 0.2	< 0.2	< 0.2
Thallium	μg/g	0.1	EPA 6020	24-Jul-19/O	0.2	0.2	0.2	0.2
Uranium	μg/g	0.1	EPA 6020	24-Jul-19/O	0.4	0.5	0.5	0.5
Vanadium	μg/g	1	EPA 6010	24-Jul-19/O	36	43	37	37
Zinc	μg/g	3	EPA 6010	24-Jul-19/O	59	58	52	54

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G80008 REPORT No. B19-21395 (i)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 15-Jul-19

DATE REPORTED: 25-Jul-19 SAMPLE MATRIX: Soil **Caduceon Environmental Laboratories**

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER: WATERWORKS NO.

			Client I.D.		TP19-6 (2m South)	TP19-6 (2m East)	TP19-6 (2m West)	TP19-7 (2m North)
			Sample I.D.		B19-21395-7	B19-21395-8	B19-21395-9	B19-21395-10
			Date Collected		15-Jul-19	15-Jul-19	15-Jul-19	15-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
pH @25°C	pH Units		SM 4500H	22-Jul-19/O				
Conductivity @25°C	mS/cm	0.001	SM 2510B	22-Jul-19/O				
Sodium Adsorption Ratio	units		SM 3120	24-Jul-19/O				
Antimony	μg/g	0.5	EPA 6020	24-Jul-19/O	< 0.5	< 0.5	< 0.5	< 0.5
Arsenic	μg/g	0.5	EPA 6020	24-Jul-19/O	3.0	3.1	2.9	2.6
Barium	μg/g	1	EPA 6010	24-Jul-19/O	139	159	201	140
Beryllium	μg/g	0.2	EPA 6010	24-Jul-19/O	0.7	0.8	0.9	0.6
Boron	μg/g	0.5	EPA 6010	24-Jul-19/O	11.8	11.8	12.8	13.2
Boron (HWS)	μg/g	0.02	MOE3470	24-Jul-19/O	0.41	0.41	0.51	0.47
Cadmium	μg/g	0.5	EPA 6010	24-Jul-19/O	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	μg/g	1	EPA 6010	24-Jul-19/O	29	32	35	26
Chromium (VI)	μg/g	0.2	EPA7196A	22-Jul-19/O	< 0.2	< 0.2	< 0.2	< 0.2
Cobalt	μg/g	1	EPA 6010	24-Jul-19/O	13	13	16	10
Copper	μg/g	1	EPA 6010	24-Jul-19/O	18	20	17	18
Lead	μg/g	5	EPA 6010	24-Jul-19/O	18	9	14	21
Mercury	μg/g	0.005	EPA 7471A	23-Jul-19/O	0.053	0.043	0.048	0.050

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G80008 REPORT No. B19-21395 (i)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 15-Jul-19

DATE REPORTED: 25-Jul-19

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		TP19-6 (2m South)	TP19-6 (2m East)	TP19-6 (2m West)	TP19-7 (2m North)
			Sample I.D.		B19-21395-7	B19-21395-8	B19-21395-9	B19-21395-10
			Date Collect	ed	15-Jul-19	15-Jul-19	15-Jul-19	15-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Molybdenum	μg/g	1	EPA 6010	24-Jul-19/O	< 1	< 1	< 1	< 1
Nickel	μg/g	1	EPA 6010	24-Jul-19/O	21	25	26	20
Selenium	μg/g	0.5	EPA 6020	24-Jul-19/O	0.6	0.8	0.6	0.5
Silver	μg/g	0.2	EPA 6010	24-Jul-19/O	< 0.2	< 0.2	< 0.2	< 0.2
Thallium	μg/g	0.1	EPA 6020	24-Jul-19/O	0.2	0.2	0.2	0.2
Uranium	μg/g	0.1	EPA 6020	24-Jul-19/O	0.4	0.5	0.6	0.4
Vanadium	μg/g	1	EPA 6010	24-Jul-19/O	38	42	46	33
Zinc	μg/g	3	EPA 6010	24-Jul-19/O	53	45	64	46

R.L. = Reporting Limit

 $Site\ Analyzed:\ K-Kingston,\ W-Windsor,\ O-Ottawa,\ R-Richmond\ Hill, B-Barrie$

Uncertainty values available upon request

Final Report

C.O.C.: G80008 REPORT No. B19-21395 (i)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 15-Jul-19

DATE REPORTED: 25-Jul-19 SAMPLE MATRIX: Soil Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		TP19-7 (2m South)	TP19-7 (2m East)	TP19-7 (2m West)	TP19-1 (0-1m)
			Sample I.D.		B19-21395- 11	B19-21395- 12	B19-21395- 13	B19-21395-14
			Date Collecte	ed	15-Jul-19	15-Jul-19	15-Jul-19	15-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
pH @25°C	pH Units		SM 4500H	22-Jul-19/O				7.37
Conductivity @25°C	mS/cm	0.001	SM 2510B	22-Jul-19/O				0.383
Sodium Adsorption Ratio	units		SM 3120	24-Jul-19/O				1.84
Antimony	μg/g	0.5	EPA 6020	24-Jul-19/O	< 0.5	< 0.5	< 0.5	< 0.5
Arsenic	μg/g	0.5	EPA 6020	24-Jul-19/O	3.3	< 0.5	2.9	3.0
Barium	μg/g	1	EPA 6010	24-Jul-19/O	188	1	156	178
Beryllium	μg/g	0.2	EPA 6010	24-Jul-19/O	0.6	< 0.2	0.4	0.6
Boron	μg/g	0.5	EPA 6010	24-Jul-19/O	11.5	7.7	14.1	10.6
Boron (HWS)	μg/g	0.02	MOE3470	24-Jul-19/O	0.43	0.43	0.48	0.56
Cadmium	μg/g	0.5	EPA 6010	24-Jul-19/O	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	μg/g	1	EPA 6010	24-Jul-19/O	24	1	22	30
Chromium (VI)	μg/g	0.2	EPA7196A	22-Jul-19/O	< 0.2	< 0.2	< 0.2	< 0.2
Cobalt	μg/g	1	EPA 6010	24-Jul-19/O	10	< 1	7	11
Copper	μg/g	1	EPA 6010	24-Jul-19/O	22	< 1	23	22
Lead	μg/g	5	EPA 6010	24-Jul-19/O	117	< 5	51	45
Mercury	μg/g	0.005	EPA 7471A	23-Jul-19/O	0.065	0.067	0.131	0.079

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill,B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G80008 REPORT No. B19-21395 (i)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 15-Jul-19

DATE REPORTED: 25-Jul-19 SAMPLE MATRIX: Soil Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		TP19-7 (2m South)	TP19-7 (2m East)	TP19-7 (2m West)	TP19-1 (0-1m)
			Sample I.D.		B19-21395- 11	B19-21395- 12	B19-21395- 13	B19-21395-14
			Date Collect	ed	15-Jul-19	15-Jul-19	15-Jul-19	15-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Molybdenum	μg/g	1	EPA 6010	24-Jul-19/O	< 1	< 1	< 1	< 1
Nickel	μg/g	1	EPA 6010	24-Jul-19/O	19	< 1	13	19
Selenium	μg/g	0.5	EPA 6020	24-Jul-19/O	0.5	< 0.5	< 0.5	0.6
Silver	μg/g	0.2	EPA 6010	24-Jul-19/O	< 0.2	< 0.2	0.4	0.2
Thallium	μg/g	0.1	EPA 6020	24-Jul-19/O	0.2	< 0.1	0.2	0.2
Uranium	μg/g	0.1	EPA 6020	24-Jul-19/O	0.4	< 0.1	0.3	0.5
Vanadium	μg/g	1	EPA 6010	24-Jul-19/O	31	< 1	20	36
Zinc	μg/g	3	EPA 6010	24-Jul-19/O	58	< 3	50	87

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G80008 REPORT No. B19-21395 (i)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 15-Jul-19

DATE REPORTED: 25-Jul-19 SAMPLE MATRIX: Soil Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		TP19-1 (2.8 Centre)	TP19-1 (East)	TP19-1 (North)	TP19-1 (West)
			Sample I.D.		B19-21395- 15	B19-21395- 16	B19-21395- 17	B19-21395-18
			Date Collecte	ed	15-Jul-19	15-Jul-19	15-Jul-19	15-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
pH @25°C	pH Units		SM 4500H	22-Jul-19/O				
Conductivity @25°C	mS/cm	0.001	SM 2510B	22-Jul-19/O				
Sodium Adsorption Ratio	units		SM 3120	24-Jul-19/O				
Antimony	μg/g	0.5	EPA 6020	24-Jul-19/O	< 0.5	< 0.5	< 0.5	< 0.5
Arsenic	μg/g	0.5	EPA 6020	24-Jul-19/O	4.4	5.2	5.8	3.6
Barium	μg/g	1	EPA 6010	24-Jul-19/O	212	190	158	184
Beryllium	μg/g	0.2	EPA 6010	24-Jul-19/O	0.8	0.9	0.5	0.7
Boron	μg/g	0.5	EPA 6010	24-Jul-19/O	21.2	15.2	16.0	14.6
Boron (HWS)	μg/g	0.02	MOE3470	24-Jul-19/O	0.56	0.69	0.45	0.55
Cadmium	μg/g	0.5	EPA 6010	24-Jul-19/O	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	μg/g	1	EPA 6010	24-Jul-19/O	32	35	19	28
Chromium (VI)	μg/g	0.2	EPA7196A	22-Jul-19/O	< 0.2	< 0.2	< 0.2	< 0.2
Cobalt	μg/g	1	EPA 6010	24-Jul-19/O	13	13	7	11
Copper	μg/g	1	EPA 6010	24-Jul-19/O	25	23	17	27
Lead	μg/g	5	EPA 6010	24-Jul-19/O	66	53	135	88
Mercury	μg/g	0.005	EPA 7471A	23-Jul-19/O	0.066	0.084	0.058	0.079

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill,B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G80008 REPORT No. B19-21395 (i)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 15-Jul-19

DATE REPORTED: 25-Jul-19

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		TP19-1 (2.8 Centre)	TP19-1 (East)	TP19-1 (North)	TP19-1 (West)
			Sample I.D.		B19-21395- 15	B19-21395- 16	B19-21395- 17	B19-21395-18
			Date Collecte	ed	15-Jul-19	15-Jul-19	15-Jul-19	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Molybdenum	μg/g	1	EPA 6010	24-Jul-19/O	< 1	< 1	< 1	< 1
Nickel	μg/g	1	EPA 6010	24-Jul-19/O	24	24	14	22
Selenium	μg/g	0.5	EPA 6020	24-Jul-19/O	0.6	0.8	0.5	0.6
Silver	μg/g	0.2	EPA 6010	24-Jul-19/O	< 0.2	< 0.2	< 0.2	< 0.2
Thallium	μg/g	0.1	EPA 6020	24-Jul-19/O	0.2	0.2	0.2	0.2
Uranium	μg/g	0.1	EPA 6020	24-Jul-19/O	0.5	0.8	0.4	0.5
Vanadium	μg/g	1	EPA 6010	24-Jul-19/O	43	45	25	37
Zinc	μg/g	3	EPA 6010	24-Jul-19/O	96	105	69	131

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G80008 REPORT No. B19-21395 (i)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 15-Jul-19

DATE REPORTED: 25-Jul-19 SAMPLE MATRIX: Soil **Caduceon Environmental Laboratories**

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER: WATERWORKS NO.

			Client I.D.		Duplicate-3			
			Sample I.D.		B19-21395-			
					19			
			Date Collecte	ed	15-Jul-19			
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
pH @25°C	pH Units		SM 4500H	22-Jul-19/O	7.37			
Conductivity @25°C	mS/cm	0.001	SM 2510B	22-Jul-19/O	0.373			
Sodium Adsorption Ratio	units		SM 3120	24-Jul-19/O	1.92			
Antimony	μg/g	0.5	EPA 6020	24-Jul-19/O	< 0.5			
Arsenic	μg/g	0.5	EPA 6020	24-Jul-19/O	3.2			
Barium	μg/g	1	EPA 6010	24-Jul-19/O	174			
Beryllium	μg/g	0.2	EPA 6010	24-Jul-19/O	0.6			
Boron	μg/g	0.5	EPA 6010	24-Jul-19/O	13.8			
Boron (HWS)	μg/g	0.02	MOE3470	24-Jul-19/O	0.50			
Cadmium	μg/g	0.5	EPA 6010	24-Jul-19/O	< 0.5			
Chromium	μg/g	1	EPA 6010	24-Jul-19/O	30			
Chromium (VI)	μg/g	0.2	EPA7196A	22-Jul-19/O	< 0.2			
Cobalt	μg/g	1	EPA 6010	24-Jul-19/O	10			
Copper	μg/g	1	EPA 6010	24-Jul-19/O	59			
Lead	μg/g	5	EPA 6010	24-Jul-19/O	44			
Mercury	μg/g	0.005	EPA 7471A	23-Jul-19/O	0.085			

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill,B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G80008 REPORT No. B19-21395 (i)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 15-Jul-19

DATE REPORTED: 25-Jul-19 SAMPLE MATRIX: Soil Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		Duplicate-3		
			Sample I.D.		B19-21395- 19		
			Date Collect	ed	15-Jul-19		
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Molybdenum	μg/g	1	EPA 6010	24-Jul-19/O	< 1		
Nickel	μg/g	1	EPA 6010	24-Jul-19/O	19		
Selenium	μg/g	0.5	EPA 6020	24-Jul-19/O	< 0.5		
Silver	μg/g	0.2	EPA 6010	24-Jul-19/O	< 0.2		
Thallium	μg/g	0.1	EPA 6020	24-Jul-19/O	0.2		
Uranium	μg/g	0.1	EPA 6020	24-Jul-19/O	0.5		
Vanadium	μg/g	1	EPA 6010	24-Jul-19/O	37		
Zinc	μg/g	3	EPA 6010	24-Jul-19/O	87		

 $\mu g/g$ = micrograms per gram (parts per million) and is equal to mg/Kg

F1 C6-C10 hydrocarbons in μg/g, (F1-btex if requested)

F2 C10-C16 hydrocarbons in $\mu g/g$, (F2-napth if requested)

F3 C16-C34 hydrocarbons in µg/g, (F3-pah if requested)

F4 C34-C50 hydrocarbons in µg/g

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

Any deviations from the method are noted and reported for any particular sample.

nC6 and nC10 response factor is within 30% of response factor for toluene:

nC10,nC16 and nC34 response factors within 10% of each other:

C50 response factors within 70% of nC10+nC16+nC34 average:

Linearity is within 15%:

All results expressed on a dry weight basis.

Unless otherwise noted all chromatograms returned to baseline by the retention time of nC50.

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Unless otherwise noted all extraction, analysis, QC requirements and limits for holding time were met.

If analyzed for F4 and F4G they are not to be summed but the greater of the two numbers are to be used in application to the CWS PHC

QC will be made available upon request.

Michelle Dubien Lab Manager

The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from

Final Report

C.O.C.: G80008 REPORT No. B19-21395 (ii)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 15-Jul-19

DATE REPORTED: 25-Jul-19

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		TP19-2 (0.8m)	TP19-6 (2m)	TP19-7 (2m)	Soil Duplicate
			Sample I.D.		B19-21395-1	B19-21395-2	B19-21395-3	B19-21395-4
			Date Collecte	ed	15-Jul-19	15-Jul-19	15-Jul-19	15-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Acetone	μg/g	0.5	EPA 8260	17-Jul-19/R	< 0.5			< 0.5
Benzene	μg/g	0.02	EPA 8260	17-Jul-19/R	< 0.02			< 0.02
Bromodichloromethane	μg/g	0.02	EPA 8260	17-Jul-19/R	< 0.02			< 0.02
Bromoform	μg/g	0.02	EPA 8260	17-Jul-19/R	< 0.02			< 0.02
Bromomethane	μg/g	0.05	EPA 8260	17-Jul-19/R	< 0.05			< 0.05
Carbon Tetrachloride	μg/g	0.05	EPA 8260	17-Jul-19/R	< 0.05			< 0.05
Monochlorobenzene (Chlorobenzene)	µg/g	0.02	EPA 8260	17-Jul-19/R	< 0.02			< 0.02
Chloroform	μg/g	0.02	EPA 8260	17-Jul-19/R	< 0.02			< 0.02
Dibromochloromethane	μg/g	0.02	EPA 8260	17-Jul-19/R	< 0.02			< 0.02
Dichlorobenzene,1,2-	μg/g	0.05	EPA 8260	17-Jul-19/R	< 0.05			< 0.05
Dichlorobenzene,1,3-	μg/g	0.05	EPA 8260	17-Jul-19/R	< 0.05			< 0.05
Dichlorobenzene,1,4-	μg/g	0.05	EPA 8260	17-Jul-19/R	< 0.05			< 0.05
Dichlorodifluoromethane	μg/g	0.05	EPA 8260	17-Jul-19/R	< 0.05			< 0.05
Dichloroethane,1,1-	μg/g	0.02	EPA 8260	17-Jul-19/R	< 0.02			< 0.02
Dichloroethane,1,2-	μg/g	0.02	EPA 8260	17-Jul-19/R	< 0.02			< 0.02
Dichloroethylene,1,1-	μg/g	0.02	EPA 8260	17-Jul-19/R	< 0.02			< 0.02

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill,B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G80008 REPORT No. B19-21395 (ii)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 15-Jul-19

DATE REPORTED: 25-Jul-19

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		TP19-2 (0.8m)	TP19-6 (2m)	TP19-7 (2m)	Soil Duplicate
			Sample I.D.		B19-21395-1	B19-21395-2	B19-21395-3	B19-21395-4
			Date Collecte	ed	15-Jul-19	15-Jul-19	15-Jul-19	15-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Dichloroethene, cis-1,2-	μg/g	0.02	EPA 8260	17-Jul-19/R	< 0.02			< 0.02
Dichloroethene, trans-1,2-	μg/g	0.02	EPA 8260	17-Jul-19/R	< 0.02			< 0.02
Dichloropropane,1,2-	μg/g	0.02	EPA 8260	17-Jul-19/R	< 0.02			< 0.02
Dichloropropene, cis-1,3-	μg/g	0.02	EPA 8260	17-Jul-19/R	< 0.02			< 0.02
Dichloropropene, trans-1,3-	μg/g	0.02	EPA 8260	17-Jul-19/R	< 0.02			< 0.02
Dichloropropene 1,3- cis+trans	μg/g	0.02	EPA 8260	17-Jul-19/R	< 0.02			< 0.02
Ethylbenzene	μg/g	0.05	EPA 8260	17-Jul-19/R	< 0.05			< 0.05
Dibromoethane,1,2- (Ethylene Dibromide)	μg/g	0.02	EPA 8260	17-Jul-19/R	< 0.02			< 0.02
Hexane	μg/g	0.02	EPA 8260	17-Jul-19/R	< 0.02			< 0.02
Methyl Ethyl Ketone	μg/g	0.5	EPA 8260	17-Jul-19/R	< 0.5			< 0.5
Methyl Isobutyl Ketone	μg/g	0.5	EPA 8260	17-Jul-19/R	< 0.5			< 0.5
Methyl-t-butyl Ether	μg/g	0.05	EPA 8260	17-Jul-19/R	< 0.05			< 0.05
Dichloromethane (Methylene Chloride)	μg/g	0.05	EPA 8260	17-Jul-19/R	< 0.05			< 0.05
Styrene	μg/g	0.05	EPA 8260	17-Jul-19/R	< 0.05			< 0.05

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G80008 REPORT No. B19-21395 (ii)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 15-Jul-19

DATE REPORTED: 25-Jul-19 SAMPLE MATRIX: Soil Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		TP19-2 (0.8m)	TP19-6 (2m)	TP19-7 (2m)	Soil Duplicate
			Sample I.D.		B19-21395-1	B19-21395-2	B19-21395-3	B19-21395-4
			Date Collecte	ed	15-Jul-19	15-Jul-19	15-Jul-19	15-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Tetrachloroethane,1,1,1,2-	μg/g	0.02	EPA 8260	17-Jul-19/R	< 0.02			< 0.02
Tetrachloroethane,1,1,2,2-	μg/g	0.05	EPA 8260	17-Jul-19/R	< 0.05			< 0.05
Tetrachloroethylene	μg/g	0.05	EPA 8260	17-Jul-19/R	< 0.05			< 0.05
Toluene	μg/g	0.2	EPA 8260	17-Jul-19/R	< 0.2			< 0.2
Trichloroethane,1,1,1-	μg/g	0.02	EPA 8260	17-Jul-19/R	< 0.02			< 0.02
Trichloroethane,1,1,2-	μg/g	0.02	EPA 8260	17-Jul-19/R	< 0.02			< 0.02
Trichloroethylene	μg/g	0.05	EPA 8260	17-Jul-19/R	< 0.05			< 0.05
Trichlorofluoromethane	μg/g	0.02	EPA 8260	17-Jul-19/R	< 0.02			< 0.02
Vinyl Chloride	μg/g	0.02	EPA 8260	17-Jul-19/R	< 0.02			< 0.02
Xylene, m,p-	μg/g	0.03	EPA 8260	17-Jul-19/R	< 0.03			< 0.03
Xylene, o-	μg/g	0.03	EPA 8260	17-Jul-19/R	< 0.03			< 0.03
Xylene, m,p,o-	μg/g	0.03	EPA 8260	17-Jul-19/R	< 0.03			< 0.03
PHC F1 (C6-C10)	μg/g	10	CWS Tier 1	17-Jul-19/R	< 10			< 10
PHC F2 (>C10-C16)	μg/g	5	CWS Tier 1	18-Jul-19/K	< 5			< 5
PHC F3 (>C16-C34)	μg/g	10	CWS Tier 1	18-Jul-19/K	< 10			< 10
PHC F4 (>C34-C50)	μg/g	10	CWS Tier 1	18-Jul-19/K	< 10			< 10

R.L. = Reporting Limit

 $Site\ Analyzed:\ K-Kingston,\ W-Windsor,\ O-Ottawa,\ R-Richmond\ Hill, B-Barrie$

Uncertainty values available upon request

Final Report

C.O.C.: G80008 **REPORT No. B19-21395 (ii)**

Report To:

XCG Consulting Limited

4 Cataragui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada Attention: Natalia Baranova

DATE RECEIVED: 15-Jul-19

DATE REPORTED: 25-Jul-19 SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D. Sample I.D.		TP19-2 (0.8m)	TP19-6 (2m)	TP19-7 (2m)	Soil Duplicate
					B19-21395-1	B19-21395-2	B19-21395-3	B19-21395-4
			Date Collect	ed	15-Jul-19	15-Jul-19	15-Jul-19	15-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
% moisture	%			16-Jul-19/R		14.5	18.2	

μg/g = micrograms per gram (parts per million) and is equal to mg/Kg

F1 C6-C10 hydrocarbons in µg/g, (F1-btex if requested)

F2 C10-C16 hydrocarbons in $\mu g/g$, (F2-napth if requested) F3 C16-C34 hydrocarbons in $\mu g/g$, (F3-pah if requested)

F4 C34-C50 hydrocarbons in µg/g

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

Any deviations from the method are noted and reported for any particular sample.

nC6 and nC10 response factor is within 30% of response factor for toluene:

nC10,nC16 and nC34 response factors within 10% of each other:

C50 response factors within 70% of nC10+nC16+nC34 average:

Linearity is within 15%:

All results expressed on a dry weight basis.

Unless otherwise noted all chromatograms returned to baseline by the retention time of nC50.

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Unless otherwise noted all extraction, analysis, QC requirements and limits for holding time were met. If analyzed for F4 and F4G they are not to be summed but the greater of the two numbers are to be used in application to the

ČWS PHC QC will be made available upon request.

Final Report

C.O.C.: G80008 REPORT No. B19-21395 (iii)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 15-Jul-19

DATE REPORTED: 25-Jul-19 SAMPLE MATRIX: Soil **Caduceon Environmental Laboratories**

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

							T	
			Client I.D.		TP19-6 (2m)	TP19-7 (2m)	TP19-1 (0- 1m)	Duplicate-3
			Sample I.D.		B19-21395-2	B19-21395-3	B19-21395- 14	B19-21395-19
			Date Collecte	ed	15-Jul-19	15-Jul-19	15-Jul-19	15-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Acenaphthene	μg/g	0.05	EPA 8270	22-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	μg/g	0.05	EPA 8270	22-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	μg/g	0.05	EPA 8270	22-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	μg/g	0.05	EPA 8270	22-Jul-19/K	< 0.05	< 0.05	0.10	0.13
Benzo(a)pyrene	μg/g	0.05	EPA 8270	22-Jul-19/K	< 0.05	< 0.05	0.11	0.13
Benzo(b)fluoranthene	μg/g	0.05	EPA 8270	22-Jul-19/K	< 0.05	< 0.05	0.16	0.17
Benzo(b+k)fluoranthene	μg/g	0.05	EPA 8270	22-Jul-19/K	< 0.05	< 0.05	0.22	0.24
Benzo(g,h,i)perylene	μg/g	0.05	EPA 8270	22-Jul-19/K	< 0.05	< 0.05	0.07	0.08
Benzo(k)fluoranthene	μg/g	0.05	EPA 8270	22-Jul-19/K	< 0.05	< 0.05	0.06	0.07
Chrysene	μg/g	0.05	EPA 8270	22-Jul-19/K	< 0.05	< 0.05	0.12	0.15
Dibenzo(a,h)anthracene	μg/g	0.05	EPA 8270	22-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	μg/g	0.05	EPA 8270	22-Jul-19/K	< 0.05	< 0.05	0.24	0.31
Fluorene	μg/g	0.05	EPA 8270	22-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3,-cd)pyrene	μg/g	0.05	EPA 8270	22-Jul-19/K	< 0.05	< 0.05	0.09	0.10
Methylnaphthalene,1-	μg/g	0.05	EPA 8270	22-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Methylnaphthalene,2-	μg/g	0.05	EPA 8270	22-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Final Report

C.O.C.: G80008 REPORT No. B19-21395 (iii)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 15-Jul-19

DATE REPORTED: 25-Jul-19 SAMPLE MATRIX: Soil Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER: WATERWORKS NO.

 Client I.D.
 TP19-6 (2m)
 TP19-7 (2m)
 TP19-1 (0-1m)
 Duplicate-3 (1m)

 Sample I.D.
 B19-21395-2
 B19-21395-3
 B19-21395-19 (14)

 Date Collected
 15-Jul-19
 15-Jul-19
 15-Jul-19

 Reference Method
 Date/Site Analyzed

				ed	15-Jul-19	15-Jul-19 15-Jul-19 15-Jul-19		
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Methylnaphthalene 2-(1-)	μg/g	0.05	EPA 8270	22-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	μg/g	0.05	EPA 8270	22-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	μg/g	0.05	EPA 8270	22-Jul-19/K	< 0.05	< 0.05	0.09	0.11
Pyrene	μg/g	0.05	EPA 8270	22-Jul-19/K	< 0.05	< 0.05	0.21	0.26

 $\mu g/g$ = micrograms per gram (parts per million) and is equal to mg/Kg

F1 C6-C10 hydrocarbons in μg/g, (F1-btex if requested)

F2 C10-C16 hydrocarbons in $\mu g/g$, (F2-napth if requested)

F3 C16-C34 hydrocarbons in μg/g, (F3-pah if requested)

F4 C34-C50 hydrocarbons in µg/g

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

Any deviations from the method are noted and reported for any particular sample.

nC6 and nC10 response factor is within 30% of response factor for toluene:

nC10,nC16 and nC34 response factors within 10% of each other:

C50 response factors within 70% of nC10+nC16+nC34 average:

Linearity is within 15%:

All results expressed on a dry weight basis.

Unless otherwise noted all chromatograms returned to baseline by the retention time of nC50.

R.L. = Reporting Limit

Site Analyzed: K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Uncertainty values available upon request

Unless otherwise noted all extraction, analysis, QC requirements and limits for holding time were met.

If analyzed for F4 and F4G they are not to be summed.

If analyzed for F4 and F4G they are not to be summed but the greater of the two numbers are to be used in application to the CWS PHC

QC will be made available upon request.

Final Report

C.O.C.: G80010 **REPORT No. B19-21653 (i)**

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada Attention: Natalia Baranova

DATE RECEIVED: 16-Jul-19

DATE REPORTED: 26-Jul-19 SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER: WATERWORKS NO.

			Client I.D.		TP19-17	TP19-18	TP19-19	TP19-9 Centre
			Sample I.D.		B19-21653-1	B19-21653-2	B19-21653-3	B19-21653-4
			Date Collecte	ed	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
pH @25°C	pH Units		SM 4500H	23-Jul-19/O				7.36
Conductivity @25°C	mS/cm	0.001	SM 2510B	24-Jul-19/O				0.258
Sodium Adsorption Ratio	units		SM 3120	24-Jul-19/O				1.16
Antimony	μg/g	0.5	EPA 6020	26-Jul-19/O	< 0.5	< 0.5	< 0.5	< 0.5
Arsenic	μg/g	0.5	EPA 6020	26-Jul-19/O	3.1	4.9	1.8	3.0
Barium	μg/g	1	EPA 6010	25-Jul-19/O	131	237	138	209
Beryllium	μg/g	0.2	EPA 6010	25-Jul-19/O	0.6	0.9	0.8	0.8
Boron	μg/g	0.5	EPA 6010	25-Jul-19/O	5.2	7.0	6.3	5.2
Boron (HWS)	μg/g	0.02	MOE3470	25-Jul-19/O	0.09	0.21	0.30	0.08
Cadmium	μg/g	0.5	EPA 6010	25-Jul-19/O	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	μg/g	1	EPA 6010	25-Jul-19/O	24	36	24	32
Chromium (VI)	μg/g	0.2	EPA7196A	24-Jul-19/O	< 0.2	< 0.2	< 0.2	< 0.2
Cobalt	μg/g	1	EPA 6010	25-Jul-19/O	9	14	12	11
Copper	μg/g	1	EPA 6010	25-Jul-19/O	22	36	9	23
Lead	μg/g	5	EPA 6010	25-Jul-19/O	39	256	16	14
Mercury	μg/g	0.005	EPA 7471A	26-Jul-19/O	0.086	0.298	0.055	0.032
Molybdenum	μg/g	1	EPA 6010	25-Jul-19/O	< 1	< 1	< 1	< 1
Nickel	μg/g	1	EPA 6010	25-Jul-19/O	17	26	20	26
Selenium	μg/g	0.5	EPA 6020	26-Jul-19/O	0.5	0.8	0.6	0.7
Silver	μg/g	0.2	EPA 6010	25-Jul-19/O	< 0.2	< 0.2	< 0.2	< 0.2
Thallium	μg/g	0.1	EPA 6020	26-Jul-19/O	0.2	0.2	0.1	0.2
Uranium	μg/g	0.1	EPA 6020	26-Jul-19/O	0.5	0.5	0.3	0.5
Vanadium	μg/g	1	EPA 6010	25-Jul-19/O	30	46	25	41
Zinc	μg/g	3	EPA 6010	25-Jul-19/O	53	109	48	52

Caduceon Environmental Laboratories.

R.L. = Reporting Limit

Michelle Dubien Lab Manager

Test methods may be modified from specified reference method unless indicated by an *

Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G80010 **REPORT No. B19-21653 (i)**

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada Attention: Natalia Baranova

DATE RECEIVED: 16-Jul-19

DATE REPORTED: 26-Jul-19 SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER: WATERWORKS NO.

			Client I.D.		TP19-9-East	TP19-9-West	TP19-9-North	TP19-9-South
			Sample I.D.		B19-21653-5	B19-21653-6	B19-21653-7	B19-21653-8
			Date Collecte	ed	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
pH @25°C	pH Units		SM 4500H	23-Jul-19/O				
Conductivity @25°C	mS/cm	0.001	SM 2510B	24-Jul-19/O				
Sodium Adsorption Ratio	units		SM 3120	24-Jul-19/O				
Antimony	μg/g	0.5	EPA 6020	26-Jul-19/O	< 0.5	< 0.5	< 0.5	< 0.5
Arsenic	μg/g	0.5	EPA 6020	26-Jul-19/O	4.0	3.8	4.2	3.6
Barium	μg/g	1	EPA 6010	25-Jul-19/O	207	216	243	242
Beryllium	μg/g	0.2	EPA 6010	25-Jul-19/O	0.9	0.9	1.0	1.0
Boron	μg/g	0.5	EPA 6010	25-Jul-19/O	4.1	3.9	9.5	5.3
Boron (HWS)	μg/g	0.02	MOE3470	25-Jul-19/O	0.19	0.12	0.16	0.13
Cadmium	μg/g	0.5	EPA 6010	25-Jul-19/O	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	μg/g	1	EPA 6010	25-Jul-19/O	34	32	38	36
Chromium (VI)	μg/g	0.2	EPA7196A	24-Jul-19/O	< 0.2	< 0.2	< 0.2	< 0.2
Cobalt	μg/g	1	EPA 6010	25-Jul-19/O	15	13	13	14
Copper	μg/g	1	EPA 6010	25-Jul-19/O	21	23	27	24
Lead	μg/g	5	EPA 6010	25-Jul-19/O	57	28	41	45
Mercury	μg/g	0.005	EPA 7471A	26-Jul-19/O	0.109	0.071	0.091	0.062
Molybdenum	μg/g	1	EPA 6010	25-Jul-19/O	< 1	< 1	< 1	< 1
Nickel	μg/g	1	EPA 6010	25-Jul-19/O	23	24	28	26
Selenium	μg/g	0.5	EPA 6020	26-Jul-19/O	0.6	0.7	0.7	0.7
Silver	μg/g	0.2	EPA 6010	25-Jul-19/O	< 0.2	< 0.2	< 0.2	< 0.2
Thallium	μg/g	0.1	EPA 6020	26-Jul-19/O	0.2	0.2	0.2	0.2
Uranium	μg/g	0.1	EPA 6020	26-Jul-19/O	0.5	0.5	0.5	0.5
Vanadium	μg/g	1	EPA 6010	25-Jul-19/O	49	46	51	50
Zinc	μg/g	3	EPA 6010	25-Jul-19/O	89	67	78	72

R.L. = Reporting Limit

Michelle Dubien

Test methods may be modified from specified reference method unless indicated by an *

Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

TP19-8-East

C.O.C.: G80010 **REPORT No. B19-21653 (i)**

Client I.D.

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada Attention: Natalia Baranova

DATE RECEIVED: 16-Jul-19

DATE REPORTED: 26-Jul-19 SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

TP19-8-North TP19-8-

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER: WATERWORKS NO.

TP19-8-

			Cilent i.b.		Centre	TP 19-6-NOILII	South	1F19-0-East
			Sample I.D.		B19-21653-9	B19-21653- 10	B19-21653- 11	B19-21653-12
			Date Collecte	ed	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
pH @25°C	pH Units		SM 4500H	23-Jul-19/O	7.28			
Conductivity @25°C	mS/cm	0.001	SM 2510B	24-Jul-19/O	0.241			
Sodium Adsorption Ratio	units		SM 3120	24-Jul-19/O	0.593			
Antimony	μg/g	0.5	EPA 6020	26-Jul-19/O	< 0.5	< 0.5	< 0.5	< 0.5
Arsenic	μg/g	0.5	EPA 6020	26-Jul-19/O	3.2	3.7	3.7	3.4
Barium	μg/g	1	EPA 6010	25-Jul-19/O	208	225	205	222
Beryllium	μg/g	0.2	EPA 6010	25-Jul-19/O	0.8	0.9	0.8	1.0
Boron	μg/g	0.5	EPA 6010	25-Jul-19/O	6.1	2.7	7.8	3.1
Boron (HWS)	μg/g	0.02	MOE3470	25-Jul-19/O	0.12	0.15	0.15	0.14
Cadmium	μg/g	0.5	EPA 6010	25-Jul-19/O	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	μg/g	1	EPA 6010	25-Jul-19/O	33	34	34	34
Chromium (VI)	μg/g	0.2	EPA7196A	24-Jul-19/O	< 0.2	< 0.2	< 0.2	< 0.2
Cobalt	μg/g	1	EPA 6010	25-Jul-19/O	11	12	11	11
Copper	μg/g	1	EPA 6010	25-Jul-19/O	24	26	34	24
Lead	μg/g	5	EPA 6010	25-Jul-19/O	30	35	23	14
Mercury	μg/g	0.005	EPA 7471A	26-Jul-19/O	0.064	0.079	0.077	0.057
Molybdenum	μg/g	1	EPA 6010	25-Jul-19/O	< 1	< 1	< 1	< 1
Nickel	μg/g	1	EPA 6010	25-Jul-19/O	25	25	24	28
Selenium	μg/g	0.5	EPA 6020	26-Jul-19/O	0.7	0.7	0.7	0.9
Silver	μg/g	0.2	EPA 6010	25-Jul-19/O	< 0.2	< 0.2	< 0.2	< 0.2
Thallium	μg/g	0.1	EPA 6020	26-Jul-19/O	0.2	0.2	0.2	0.2
Uranium	μg/g	0.1	EPA 6020	26-Jul-19/O	0.5	0.6	0.5	0.5
Vanadium	μg/g	1	EPA 6010	25-Jul-19/O	41	44	42	45
Zinc	μg/g	3	EPA 6010	25-Jul-19/O	56	63	62	55

R.L. = Reporting Limit

Michelle Dubien

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G80010 **REPORT No. B19-21653 (i)**

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada Attention: Natalia Baranova

DATE RECEIVED: 16-Jul-19

DATE REPORTED: 26-Jul-19 SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		TP19-8-West	TP19-11- North	TP19-11- South	TP19-11-West
			Sample I.D.		B19-21653- 13	B19-21653- 14	B19-21653- 15	B19-21653-16
			Date Collecte	ed	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
pH @25°C	pH Units		SM 4500H	23-Jul-19/O				
Conductivity @25°C	mS/cm	0.001	SM 2510B	24-Jul-19/O				
Sodium Adsorption Ratio	units		SM 3120	24-Jul-19/O				
Antimony	μg/g	0.5	EPA 6020	26-Jul-19/O	< 0.5	< 0.5	< 0.5	< 0.5
Arsenic	μg/g	0.5	EPA 6020	26-Jul-19/O	3.5	3.3	4.2	6.1
Barium	μg/g	1	EPA 6010	25-Jul-19/O	233	516	330	340
Beryllium	μg/g	0.2	EPA 6010	25-Jul-19/O	1.0	1.2	1.0	1.1
Boron	μg/g	0.5	EPA 6010	25-Jul-19/O	2.5	1.4	2.4	4.6
Boron (HWS)	μg/g	0.02	MOE3470	25-Jul-19/O	0.16	0.20	0.21	0.25
Cadmium	μg/g	0.5	EPA 6010	25-Jul-19/O	< 0.5	< 0.5	< 0.5	0.5
Chromium	μg/g	1	EPA 6010	25-Jul-19/O	37	53	45	45
Chromium (VI)	μg/g	0.2	EPA7196A	24-Jul-19/O	< 0.2	< 0.2	< 0.2	< 0.2
Cobalt	μg/g	1	EPA 6010	25-Jul-19/O	14	18	16	17
Copper	μg/g	1	EPA 6010	25-Jul-19/O	21	37	33	32
Lead	μg/g	5	EPA 6010	25-Jul-19/O	25	10	25	79
Mercury	μg/g	0.005	EPA 7471A	26-Jul-19/O	0.062	0.019	0.038	0.058
Molybdenum	μg/g	1	EPA 6010	25-Jul-19/O	< 1	< 1	< 1	< 1
Nickel	μg/g	1	EPA 6010	25-Jul-19/O	28	43	32	34
Selenium	μg/g	0.5	EPA 6020	26-Jul-19/O	0.8	0.9	0.5	0.9
Silver	μg/g	0.2	EPA 6010	25-Jul-19/O	< 0.2	< 0.2	< 0.2	< 0.2
Thallium	μg/g	0.1	EPA 6020	26-Jul-19/O	0.3	0.4	0.3	0.3
Uranium	μg/g	0.1	EPA 6020	26-Jul-19/O	0.6	0.6	0.5	0.6
Vanadium	μg/g	1	EPA 6010	25-Jul-19/O	49	68	56	60
Zinc	μg/g	3	EPA 6010	25-Jul-19/O	68	101	153	98

Caduceon Environmental Laboratories.

R.L. = Reporting Limit

Michelle Dubien Lab Manager

Test methods may be modified from specified reference method unless indicated by an *

Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

TP19-12-

C.O.C.: G80010 **REPORT No. B19-21653 (i)**

Client I.D.

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada Attention: Natalia Baranova

DATE RECEIVED: 16-Jul-19

DATE REPORTED: 26-Jul-19 SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

TP19-12-

P.O. NUMBER: WATERWORKS NO.

TP19-11-East TP19-11-

						Centre	North	South
			Sample I.D.		B19-21653- 17	B19-21653- 18	North B19-21653- 19 16-Jul-19 < 0.5 2.6 170 0.8 6.5 0.18 < 0.5 33 < 0.2 12 18 27 0.051 < 1 23 < 0.5 < 0.2 0.5 < 0.2 0.5	B19-21653-20
			Date Collecte	ed	16-Jul-19 16-Jul-19 16-Jul-19		16-Jul-19	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
pH @25°C	pH Units		SM 4500H	23-Jul-19/O		7.33		
Conductivity @25°C	mS/cm	0.001	SM 2510B	24-Jul-19/O				
Sodium Adsorption Ratio	units		SM 3120	24-Jul-19/O				
Antimony	μg/g	0.5	EPA 6020	26-Jul-19/O	< 0.5	< 0.5	< 0.5	< 0.5
Arsenic	μg/g	0.5	EPA 6020	26-Jul-19/O	3.4	3.0	2.6	1.9
Barium	μg/g	1	EPA 6010	25-Jul-19/O	401	314	170	76
Beryllium	μg/g	0.2	EPA 6010	25-Jul-19/O	1.1	0.9	0.8	0.3
Boron	μg/g	0.5	EPA 6010	25-Jul-19/O	4.4	5.6	6.5	4.4
Boron (HWS)	μg/g	0.02	MOE3470	25-Jul-19/O	0.13	0.14	0.18	0.14
Cadmium	μg/g	0.5	EPA 6010	25-Jul-19/O	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	μg/g	1	EPA 6010	25-Jul-19/O	50	40	33	12
Chromium (VI)	μg/g	0.2	EPA7196A	24-Jul-19/O	< 0.2	< 0.2	< 0.2	< 0.2
Cobalt	μg/g	1	EPA 6010	25-Jul-19/O	19	14	12	6
Copper	μg/g	1	EPA 6010	25-Jul-19/O	37	30	18	13
Lead	μg/g	5	EPA 6010	25-Jul-19/O	14	15	27	35
Mercury	μg/g	0.005	EPA 7471A	26-Jul-19/O	0.017	0.022	0.051	0.031
Molybdenum	μg/g	1	EPA 6010	25-Jul-19/O	< 1	< 1	< 1	< 1
Nickel	μg/g	1	EPA 6010	25-Jul-19/O	42	32	23	10
Selenium	μg/g	0.5	EPA 6020	26-Jul-19/O	0.7	0.7	< 0.5	< 0.5
Silver	μg/g	0.2	EPA 6010	25-Jul-19/O	< 0.2	< 0.2	< 0.2	< 0.2
Thallium	μg/g	0.1	EPA 6020	26-Jul-19/O	0.4	0.3	0.2	0.1
Uranium	μg/g	0.1	EPA 6020	26-Jul-19/O	0.6	0.5	0.5	0.4
Vanadium	μg/g	1	EPA 6010	25-Jul-19/O	67	55	51	23
Zinc	μg/g	3	EPA 6010	25-Jul-19/O	104	94	76	45

R.L. = Reporting Limit

Michelle Dubien

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

TP19-10-

C.O.C.: G80010 **REPORT No. B19-21653 (i)**

Client I.D.

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada Attention: Natalia Baranova

DATE RECEIVED: 16-Jul-19

DATE REPORTED: 26-Jul-19 SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

TP19-12-East

TP19-12-

P.O. NUMBER: WATERWORKS NO.

TP19-12-

					Centre		West	North
			Sample I.D.		B19-21653- 21	B19-21653- 22	B19-21653- 23	B19-21653-24
			Date Collecte	ed	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
pH @25°C	pH Units		SM 4500H	23-Jul-19/O	7.37			
Conductivity @25°C	mS/cm	0.001	SM 2510B	24-Jul-19/O				
Sodium Adsorption Ratio	units		SM 3120	24-Jul-19/O				
Antimony	μg/g	0.5	EPA 6020	26-Jul-19/O	< 0.5	< 0.5	< 0.5	< 0.5
Arsenic	μg/g	0.5	EPA 6020	26-Jul-19/O	3.5	3.4	3.2	2.6
Barium	μg/g	1	EPA 6010	25-Jul-19/O	229	320	289	232
Beryllium	μg/g	0.2	EPA 6010	25-Jul-19/O	0.7	0.9	0.8	0.8
Boron	μg/g	0.5	EPA 6010	25-Jul-19/O	12.9	5.9	6.8	8.4
Boron (HWS)	μg/g	0.02	MOE3470	25-Jul-19/O	0.19	0.15	0.20	0.11
Cadmium	μg/g	0.5	EPA 6010	25-Jul-19/O	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	μg/g	1	EPA 6010	25-Jul-19/O	29	46	34	38
Chromium (VI)	μg/g	0.2	EPA7196A	24-Jul-19/O	< 0.2	< 0.2	< 0.2	< 0.2
Cobalt	μg/g	1	EPA 6010	25-Jul-19/O	10	14	12	10
Copper	μg/g	1	EPA 6010	25-Jul-19/O	22	30	26	24
Lead	μg/g	5	EPA 6010	25-Jul-19/O	65	11	21	7
Mercury	μg/g	0.005	EPA 7471A	26-Jul-19/O	0.044	0.020	0.040	0.022
Molybdenum	μg/g	1	EPA 6010	25-Jul-19/O	< 1	< 1	< 1	< 1
Nickel	μg/g	1	EPA 6010	25-Jul-19/O	23	38	29	27
Selenium	μg/g	0.5	EPA 6020	26-Jul-19/O	0.6	0.7	0.6	0.7
Silver	μg/g	0.2	EPA 6010	25-Jul-19/O	< 0.2	< 0.2	< 0.2	< 0.2
Thallium	μg/g	0.1	EPA 6020	26-Jul-19/O	0.2	0.3	0.3	0.2
Uranium	μg/g	0.1	EPA 6020	26-Jul-19/O	0.5	0.5	0.5	0.5
Vanadium	μg/g	1	EPA 6010	25-Jul-19/O	41	57	46	48
Zinc	μg/g	3	EPA 6010	25-Jul-19/O	103	137	67	65

R.L. = Reporting Limit

Michelle Dubien

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G80010 REPORT No. B19-21653 (i)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 16-Jul-19

DATE REPORTED: 26-Jul-19 SAMPLE MATRIX: Soil Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

			Client I.D.		TP19-10- South	TP19-10-East	TP19-10- West	TP19-10- Centre
			Sample I.D.		B19-21653- 25	B19-21653- 26	B19-21653- 27	B19-21653-28
			Date Collecte	ed	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
pH @25°C	pH Units		SM 4500H	23-Jul-19/O				7.25
Conductivity @25°C	mS/cm	0.001	SM 2510B	24-Jul-19/O				
Sodium Adsorption Ratio	units		SM 3120	24-Jul-19/O				
Antimony	μg/g	0.5	EPA 6020	26-Jul-19/O	< 0.5	< 0.5	< 0.5	< 0.5
Arsenic	μg/g	0.5	EPA 6020	26-Jul-19/O	2.9	2.3	2.5	2.4
Barium	μg/g	1	EPA 6010	25-Jul-19/O	273	189	206	196
Beryllium	μg/g	0.2	EPA 6010	25-Jul-19/O	0.9	0.6	0.8	8.0
Boron	μg/g	0.5	EPA 6010	25-Jul-19/O	5.5	5.1	4.8	4.3
Boron (HWS)	μg/g	0.02	MOE3470	25-Jul-19/O	0.10	0.08	0.10	0.10
Cadmium	μg/g	0.5	EPA 6010	25-Jul-19/O	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	μg/g	1	EPA 6010	25-Jul-19/O	39	26	35	34
Chromium (VI)	μg/g	0.2	EPA7196A	24-Jul-19/O	< 0.2	< 0.2	< 0.2	< 0.2
Cobalt	μg/g	1	EPA 6010	25-Jul-19/O	13	10	10	10
Copper	μg/g	1	EPA 6010	25-Jul-19/O	29	21	24	20
Lead	μg/g	5	EPA 6010	25-Jul-19/O	8	7	7	9
Mercury	μg/g	0.005	EPA 7471A	26-Jul-19/O	0.023	0.015	0.025	0.026
Molybdenum	μg/g	1	EPA 6010	25-Jul-19/O	< 1	< 1	< 1	< 1
Nickel	μg/g	1	EPA 6010	25-Jul-19/O	32	21	25	26
Selenium	μg/g	0.5	EPA 6020	26-Jul-19/O	0.9	0.6	0.7	0.7
Silver	μg/g	0.2	EPA 6010	25-Jul-19/O	< 0.2	< 0.2	< 0.2	< 0.2
Thallium	μg/g	0.1	EPA 6020	26-Jul-19/O	0.3	0.2	0.2	0.2
Uranium	μg/g	0.1	EPA 6020	26-Jul-19/O	0.5	0.4	0.5	0.5
Vanadium	μg/g	1	EPA 6010	25-Jul-19/O	50	39	45	40
Zinc	μg/g	3	EPA 6010	25-Jul-19/O	69	46	59	54

R.L. = Reporting Limit

Michelle Dubien

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G80010 **REPORT No. B19-21653 (i)**

Client I.D.

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada Attention: Natalia Baranova

DATE RECEIVED: 16-Jul-19

DATE REPORTED: 26-Jul-19 SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

Duplicate 5

Duplicate 4

P.O. NUMBER: WATERWORKS NO.

TP19-10-

Bottom

					Bottom			
			Sample I.D.		B19-21653- 29	B19-21653- 30	B19-21653- 31	
			Date Collecte	ed	16-Jul-19	16-Jul-19	16-Jul-19	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
pH @25°C	pH Units		SM 4500H	23-Jul-19/O	7.35			
Conductivity @25°C	mS/cm	0.001	SM 2510B	24-Jul-19/O				
Sodium Adsorption Ratio	units		SM 3120	24-Jul-19/O				
Antimony	μg/g	0.5	EPA 6020	26-Jul-19/O	< 0.5	< 0.5	< 0.5	
Arsenic	μg/g	0.5	EPA 6020	26-Jul-19/O	1.9	3.1	2.1	
Barium	μg/g	1	EPA 6010	25-Jul-19/O	78	289	96	
Beryllium	μg/g	0.2	EPA 6010	25-Jul-19/O	0.4	1.0	0.4	
Boron	μg/g	0.5	EPA 6010	25-Jul-19/O	5.9	6.0	5.3	
Boron (HWS)	μg/g	0.02	MOE3470	25-Jul-19/O	0.04	0.16	0.11	
Cadmium	μg/g	0.5	EPA 6010	25-Jul-19/O	< 0.5	< 0.5	< 0.5	
Chromium	μg/g	1	EPA 6010	25-Jul-19/O	18	54	17	
Chromium (VI)	μg/g	0.2	EPA7196A	24-Jul-19/O	< 0.2	< 0.2	< 0.2	
Cobalt	μg/g	1	EPA 6010	25-Jul-19/O	6	14	7	
Copper	μg/g	1	EPA 6010	25-Jul-19/O	13	30	13	
Lead	μg/g	5	EPA 6010	25-Jul-19/O	< 5	9	12	
Mercury	μg/g	0.005	EPA 7471A	26-Jul-19/O	0.028	0.023	0.037	
Molybdenum	μg/g	1	EPA 6010	25-Jul-19/O	< 1	2	< 1	
Nickel	μg/g	1	EPA 6010	25-Jul-19/O	17	54	14	
Selenium	μg/g	0.5	EPA 6020	26-Jul-19/O	< 0.5	0.9	< 0.5	
Silver	μg/g	0.2	EPA 6010	25-Jul-19/O	< 0.2	< 0.2	< 0.2	
Thallium	μg/g	0.1	EPA 6020	26-Jul-19/O	0.1	0.3	0.1	
Uranium	μg/g	0.1	EPA 6020	26-Jul-19/O	0.4	0.5	0.4	
Vanadium	μg/g	1	EPA 6010	25-Jul-19/O	25	52	24	
Zinc	μg/g	3	EPA 6010	25-Jul-19/O	26	73	29	

R.L. = Reporting Limit

Michelle Dubien

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G80010 REPORT No. B19-21653 (ii)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 16-Jul-19

DATE REPORTED: 26-Jul-19
SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER: WATERWORKS NO.

			Client I.D.		TP19-9 Centre	TP19-8- Centre	TP19-11- Centre	TP19-12- Centre
			Sample I.D.		B19-21653-4	B19-21653-9	B19-21653- 18	B19-21653-21
			Date Collecte	ed	16-Jul-19	16-Jul-19	16-Jul-19	16-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Acenaphthene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b+k)fluoranthene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(g,h,i)perylene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Dibenzo(a,h)anthracene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3,-cd)pyrene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Methylnaphthalene,1-	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Methylnaphthalene,2-	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Methylnaphthalene 2-(1-)	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	< 0.05	< 0.05
% moisture	%			26-Jul-19/K	16.5	19.4	19.7	11.9

R.L. = Reporting Limit

Michelle Dubien Lab Manager

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G80010 **REPORT No. B19-21653 (ii)**

Client I.D.

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada Attention: Natalia Baranova

DATE RECEIVED: 16-Jul-19

DATE REPORTED: 26-Jul-19 SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

TP19-10-

P.O. NUMBER: WATERWORKS NO.

TP19-10-

					Centre	Bottom	
			Sample I.D.		B19-21653- 28	B19-21653- 29	
			Date Collecte	ed	16-Jul-19	16-Jul-19	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Acenaphthene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	
Acenaphthylene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	
Anthracene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	
Benzo(a)anthracene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	
Benzo(a)pyrene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	
Benzo(b)fluoranthene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	
Benzo(b+k)fluoranthene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	
Benzo(g,h,i)perylene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	
Benzo(k)fluoranthene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	
Chrysene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	
Dibenzo(a,h)anthracene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	
Fluoranthene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	
Fluorene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	
Indeno(1,2,3,-cd)pyrene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	
Methylnaphthalene,1-	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	
Methylnaphthalene,2-	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	
Methylnaphthalene 2-(1-)	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	
Naphthalene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	
Phenanthrene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	
Pyrene	μg/g	0.05	EPA 8270	24-Jul-19/K	< 0.05	< 0.05	
% moisture	%			26-Jul-19/K	20.5	13.8	

R.L. = Reporting Limit

Michelle Dubien

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G80004 REPORT No. B19-21399 (i)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 15-Jul-19

DATE REPORTED: 22-Jul-19
SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER: WATERWORKS NO.

			Client I.D.		MW19-3	MW19-1	MW19-4	MW19-6
			Sample I.D.		B19-21399-1	B19-21399-3	B19-21399-4	B19-21399-5
			Date Collecte	ed	12-Jul-19	12-Jul-19	12-Jul-19	12-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Conductivity @25°C	µmho/cm	1	SM 2510B	16-Jul-19/O		1220		1440
Chloride	mg/L	0.5	SM4110C	18-Jul-19/O	117	142	25.7	239
Antimony	μg/L	0.1	EPA 200.8	17-Jul-19/O	< 0.1	< 0.1	1.5	0.3
Arsenic	μg/L	0.1	EPA 200.8	17-Jul-19/O	< 0.1	< 0.1	0.4	0.3
Barium	μg/L	1	SM 3120	22-Jul-19/O	119	150	90	105
Beryllium	μg/L	0.1	EPA 200.8	17-Jul-19/O	< 0.1	< 0.1	< 0.1	< 0.1
Boron	μg/L	5	SM 3120	22-Jul-19/O	120	44	166	139
Cadmium	μg/L	0.015	EPA 200.8	17-Jul-19/O	< 0.015	< 0.015	< 0.015	< 0.015
Chromium	μg/L	2	SM 3120	22-Jul-19/O	< 2	< 2	< 2	< 2
Chromium (VI)	μg/L	10	MOE E3056	18-Jul-19/O	< 10	< 10	< 10	< 10 1
Cobalt	μg/L	0.1	EPA 200.8	17-Jul-19/O	0.2	0.3	0.5	1.6
Copper	μg/L	2	SM 3120	22-Jul-19/O	< 2	< 2	< 2	< 2
Lead	μg/L	0.02	EPA 200.8	17-Jul-19/O	< 0.02	0.02	0.06	0.06
Mercury	μg/L	0.02	SM 3112 B	19-Jul-19/O	< 0.02	0.05	< 0.02	0.04
Molybdenum	μg/L	0.1	EPA 200.8	17-Jul-19/O	1.0	0.7	3.1	3.0
Nickel	μg/L	0.2	EPA 200.8	17-Jul-19/O	1.3	1.9	2.2	4.9
Selenium	μg/L	1	EPA 200.8	17-Jul-19/O	1	2	< 1	2
Silver	μg/L	0.1	EPA 200.8	17-Jul-19/O	< 0.1	< 0.1	< 0.1	< 0.1
Sodium	μg/L	200	SM 3120	22-Jul-19/O	85400	86700	25000	77700
Thallium	μg/L	0.05	EPA 200.8	17-Jul-19/O	< 0.05	< 0.05	< 0.05	< 0.05
Uranium	μg/L	0.05	EPA 200.8	17-Jul-19/O	0.72	0.63	0.57	1.27
Vanadium	μg/L	5	SM 3120	22-Jul-19/O	< 5	< 5	< 5	< 5
Zinc	μg/L	5	SM 3120	22-Jul-19/O	< 5	6	6	5

¹ Chromium (VI) result is based on total chromium

M. Duci

R.L. = Reporting Limit

Michelle Dubien Lab Manager

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G80004 **REPORT No. B19-21399 (i)**

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada Attention: Natalia Baranova

DATE RECEIVED: 15-Jul-19

DATE REPORTED: 22-Jul-19 SAMPLE MATRIX: Groundwater Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER: WATERWORKS NO.

			Client I.D.		MW04-5	Duplicate		
			Sample I.D.		B19-21399-6	B19-21399-7		
			Date Collecte	ed	12-Jul-19	12-Jul-19		
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Conductivity @25°C	µmho/cm	1	SM 2510B	16-Jul-19/O	629			
Chloride	mg/L	0.5	SM4110C	18-Jul-19/O	3.7	116		
Antimony	μg/L	0.1	EPA 200.8	17-Jul-19/O		< 0.1		
Arsenic	μg/L	0.1	EPA 200.8	17-Jul-19/O		< 0.1		
Barium	μg/L	1	SM 3120	22-Jul-19/O		121		
Beryllium	μg/L	0.1	EPA 200.8	17-Jul-19/O		< 0.1		
Boron	μg/L	5	SM 3120	22-Jul-19/O		118		
Cadmium	μg/L	0.015	EPA 200.8	17-Jul-19/O		< 0.015		
Chromium	μg/L	2	SM 3120	22-Jul-19/O		< 2		
Chromium (VI)	μg/L	10	MOE E3056	18-Jul-19/O		< 10	1	
Cobalt	μg/L	0.1	EPA 200.8	17-Jul-19/O		0.2		
Copper	μg/L	2	SM 3120	22-Jul-19/O		< 2		
Lead	μg/L	0.02	EPA 200.8	17-Jul-19/O		< 0.02		
Mercury	μg/L	0.02	SM 3112 B	19-Jul-19/O		< 0.02		
Molybdenum	μg/L	0.1	EPA 200.8	17-Jul-19/O		1.0		
Nickel	μg/L	0.2	EPA 200.8	17-Jul-19/O		1.3		
Selenium	μg/L	1	EPA 200.8	17-Jul-19/O		1		
Silver	μg/L	0.1	EPA 200.8	17-Jul-19/O		< 0.1		
Sodium	μg/L	200	SM 3120	22-Jul-19/O		84500		
Thallium	μg/L	0.05	EPA 200.8	17-Jul-19/O		< 0.05		
Uranium	μg/L	0.05	EPA 200.8	17-Jul-19/O		0.68		
Vanadium	μg/L	5	SM 3120	22-Jul-19/O		< 5		
Zinc	μg/L	5	SM 3120	22-Jul-19/O		< 5		

¹ Chromium (VI) result is based on total chromium

R.L. = Reporting Limit

Michelle Dubien Lab Manager

Test methods may be modified from specified reference method unless indicated by an *

Final Report

C.O.C.: G80004 REPORT No. B19-21399 (ii)

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada **Attention:** Natalia Baranova

DATE RECEIVED: 15-Jul-19

DATE REPORTED: 22-Jul-19
SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER: WATERWORKS NO.

			Client I.D.		MW19-3	MW04-6	MW19-1	MW19-4
			Sample I.D.		B19-21399-1	B19-21399-2	B19-21399-3	B19-21399-4
			Date Collect	ed	12-Jul-19	12-Jul-19	12-Jul-19	12-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Acetone	μg/L	30	EPA 8260	19-Jul-19/R	< 30		< 30	< 30
Benzene	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Bromodichloromethane	μg/L	2	EPA 8260	19-Jul-19/R	< 2		< 2	< 2
Bromoform	μg/L	5	EPA 8260	19-Jul-19/R	< 5		< 5	< 5
Bromomethane	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Carbon Tetrachloride	μg/L	0.2	EPA 8260	19-Jul-19/R	< 0.2		< 0.2	< 0.2
Monochlorobenzene (Chlorobenzene)	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Chloroform	μg/L	1	EPA 8260	19-Jul-19/R	< 1		< 1	< 1
Dibromochloromethane	μg/L	2	EPA 8260	19-Jul-19/R	< 2		< 2	< 2
Dichlorobenzene,1,2-	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Dichlorobenzene,1,3-	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Dichlorobenzene,1,4-	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Dichlorodifluoromethane	μg/L	2	EPA 8260	19-Jul-19/R	< 2		< 2	< 2
Dichloroethane,1,1-	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Dichloroethane,1,2-	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Dichloroethylene,1,1-	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Dichloroethene, cis-1,2-	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Dichloroethene, trans-1,2-	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Dichloropropane,1,2-	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Dichloropropene, cis-1,3-	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Dichloropropene, trans-1,3-	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Dichloropropene 1,3- cis+trans	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Ethylbenzene	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Dibromoethane,1,2- (Ethylene Dibromide)	μg/L	0.2	EPA 8260	19-Jul-19/R	< 0.2		< 0.2	< 0.2
Hexane	μg/L	5	EPA 8260	19-Jul-19/R	< 5		< 5	< 5

M.Duri

R.L. = Reporting Limit

Michelle Dubien Lab Manager

Test methods may be modified from specified reference method unless indicated by an *

Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G80004 **REPORT No. B19-21399 (ii)**

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada Attention: Natalia Baranova

DATE RECEIVED: 15-Jul-19

DATE REPORTED: 22-Jul-19 SAMPLE MATRIX: Groundwater **Caduceon Environmental Laboratories**

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER: WATERWORKS NO.

			Client I.D.		MW19-3	MW04-6	MW19-1	MW19-4
			Sample I.D.		B19-21399-1	B19-21399-2	B19-21399-3	B19-21399-4
			Date Collected		12-Jul-19	12-Jul-19	12-Jul-19	12-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Methyl Ethyl Ketone	μg/L	20	EPA 8260	19-Jul-19/R	< 20		< 20	< 20
Methyl Isobutyl Ketone	μg/L	20	EPA 8260	19-Jul-19/R	< 20		< 20	< 20
Methyl-t-butyl Ether	μg/L	2	EPA 8260	19-Jul-19/R	< 2		< 2	< 2
Dichloromethane (Methylene Chloride)	μg/L	5	EPA 8260	19-Jul-19/R	< 5		< 5	< 5
Styrene	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Tetrachloroethane,1,1,1,2-	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Tetrachloroethane,1,1,2,2-	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Tetrachloroethylene	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Toluene	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Trichloroethane,1,1,1-	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Trichloroethane,1,1,2-	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Trichloroethylene	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Trichlorofluoromethane	μg/L	5	EPA 8260	19-Jul-19/R	< 5		< 5	< 5
Vinyl Chloride	μg/L	0.2	EPA 8260	19-Jul-19/R	< 0.2		< 0.2	< 0.2
Xylene, m,p-	μg/L	1.0	EPA 8260	19-Jul-19/R	< 1.0		< 1.0	< 1.0
Xylene, o-	μg/L	0.5	EPA 8260	19-Jul-19/R	< 0.5		< 0.5	< 0.5
Xylene, m,p,o-	μg/L	1.1	EPA 8260	19-Jul-19/R	< 1.1		< 1.1	< 1.1
PHC F1 (C6-C10)	μg/L	50	MOE E3421	19-Jul-19/R	< 50	< 50	< 50	< 50
PHC F2 (>C10-C16)	μg/L	50	MOE E3421	16-Jul-19/K	< 50	< 50	< 50	< 50
PHC F3 (>C16-C34)	μg/L	400	MOE E3421	16-Jul-19/K	< 400	< 400	< 400	1300
PHC F4 (>C34-C50)	μg/L	400	MOE E3421	16-Jul-19/K	< 400	< 400	< 400	< 400

R.L. = Reporting Limit

Michelle Dubien Lab Manager

Test methods may be modified from specified reference method unless indicated by an *

Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Caduceon Environmental Laboratories.

Final Report

C.O.C.: G80004 **REPORT No. B19-21399 (ii)**

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada Attention: Natalia Baranova

DATE RECEIVED: 15-Jul-19

DATE REPORTED: 22-Jul-19 SAMPLE MATRIX: Groundwater **Caduceon Environmental Laboratories**

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER: WATERWORKS NO.

			Client I.D.		MW19-6	MW04-5	Duplicate	Trip Blank
			Sample I.D.		B19-21399-5	B19-21399-6	B19-21399-7	B19-21399-8
			Date Collect	ed	12-Jul-19	12-Jul-19	12-Jul-19	12-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Acetone	μg/L	30	EPA 8260	19-Jul-19/R		< 30	< 30	< 30
Benzene	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Bromodichloromethane	μg/L	2	EPA 8260	19-Jul-19/R		< 2	< 2	< 2
Bromoform	μg/L	5	EPA 8260	19-Jul-19/R		< 5	< 5	< 5
Bromomethane	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Carbon Tetrachloride	μg/L	0.2	EPA 8260	19-Jul-19/R		< 0.2	< 0.2	< 0.2
Monochlorobenzene (Chlorobenzene)	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Chloroform	μg/L	1	EPA 8260	19-Jul-19/R		< 1	< 1	< 1
Dibromochloromethane	μg/L	2	EPA 8260	19-Jul-19/R		< 2	< 2	< 2
Dichlorobenzene,1,2-	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Dichlorobenzene,1,3-	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Dichlorobenzene,1,4-	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Dichlorodifluoromethane	μg/L	2	EPA 8260	19-Jul-19/R		< 2	< 2	< 2
Dichloroethane,1,1-	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Dichloroethane,1,2-	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Dichloroethylene,1,1-	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Dichloroethene, cis-1,2-	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Dichloroethene, trans-1,2-	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Dichloropropane,1,2-	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Dichloropropene, cis-1,3-	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Dichloropropene, trans-1,3-	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Dichloropropene 1,3- cis+trans	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Ethylbenzene	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Dibromoethane,1,2- (Ethylene Dibromide)	μg/L	0.2	EPA 8260	19-Jul-19/R		< 0.2	< 0.2	< 0.2
Hexane	μg/L	5	EPA 8260	19-Jul-19/R		< 5	< 5	< 5

R.L. = Reporting Limit

Michelle Dubien Lab Manager

Test methods may be modified from specified reference method unless indicated by an *

Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G80004 **REPORT No. B19-21399 (ii)**

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada Attention: Natalia Baranova

DATE RECEIVED: 15-Jul-19

DATE REPORTED: 22-Jul-19 SAMPLE MATRIX: Groundwater **Caduceon Environmental Laboratories**

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER: WATERWORKS NO.

			Client I.D.		MW19-6	MW04-5	Duplicate	Trip Blank
			Sample I.D.		B19-21399-5	B19-21399-6	B19-21399-7	B19-21399-8
			Date Collected		12-Jul-19	12-Jul-19	12-Jul-19	12-Jul-19
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Methyl Ethyl Ketone	μg/L	20	EPA 8260	19-Jul-19/R		< 20	< 20	< 20
Methyl Isobutyl Ketone	μg/L	20	EPA 8260	19-Jul-19/R		< 20	< 20	< 20
Methyl-t-butyl Ether	μg/L	2	EPA 8260	19-Jul-19/R		< 2	< 2	< 2
Dichloromethane (Methylene Chloride)	μg/L	5	EPA 8260	19-Jul-19/R		< 5	< 5	< 5
Styrene	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Tetrachloroethane,1,1,1,2-	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Tetrachloroethane,1,1,2,2-	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Tetrachloroethylene	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Toluene	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Trichloroethane,1,1,1-	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Trichloroethane,1,1,2-	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Trichloroethylene	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Trichlorofluoromethane	μg/L	5	EPA 8260	19-Jul-19/R		< 5	< 5	< 5
Vinyl Chloride	μg/L	0.2	EPA 8260	19-Jul-19/R		< 0.2	< 0.2	< 0.2
Xylene, m,p-	μg/L	1.0	EPA 8260	19-Jul-19/R		< 1.0	< 1.0	< 1.0
Xylene, o-	μg/L	0.5	EPA 8260	19-Jul-19/R		< 0.5	< 0.5	< 0.5
Xylene, m,p,o-	μg/L	1.1	EPA 8260	19-Jul-19/R		< 1.1	< 1.1	< 1.1
PHC F1 (C6-C10)	μg/L	50	MOE E3421	19-Jul-19/R			< 50	
PHC F2 (>C10-C16)	μg/L	50	MOE E3421	16-Jul-19/K	< 50		< 50	
PHC F3 (>C16-C34)	μg/L	400	MOE E3421	16-Jul-19/K	< 400		< 400	
PHC F4 (>C34-C50)	μg/L	400	MOE E3421	16-Jul-19/K	< 400		< 400	

R.L. = Reporting Limit

Michelle Dubien Lab Manager

Test methods may be modified from specified reference method unless indicated by an *

Final Report

C.O.C.: G92125 REPORT No. B19-38094

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada

Attention: Kamin Paul

DATE RECEIVED: 25-Nov-19

DATE REPORTED: 02-Dec-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method
PHC(F2-F4)	1	Kingston	KPR	26-Nov-19	C-PHC-W-001 (k)	MOE E3421
PHC(F1)	1	Richmond Hill	JE	27-Nov-19	C-VPHW-01 (rh)	MOE E3421

μg/g = micrograms per gram (parts per million) and is equal to mg/Kg

F1 C6-C10 hydrocarbons in μg/g, (F1-btex if requested)

F2 C10-C16 hydrocarbons in µg/g, (F2-napth if requested) F3 C16-C34 hydrocarbons in µg/g, (F3-pah if requested)

F4 C34-C50 hydrocarbons in µg/g

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

Any deviations from the method are noted and reported for any particular sample.

nC6 and nC10 response factor is within 30% of response factor for toluene:

nC10,nC16 and nC34 response factors within 10% of each other:

C50 response factors within 70% of nC10+nC16+nC34 average:

Linearity is within 15%:

All results expressed on a dry weight basis.

Unless otherwise noted all chromatograms returned to baseline by the retention

time of nC50.

Unless otherwise noted all extraction, analysis, QC requirements and limits for holding time were met. If analyzed for F4 and F4G they are not to be summed but the greater of the two numbers are to be used in application to the CWS PHC

QC will be made available upon request.

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 3 - NPGW - Table 3 - Non-Potable Ground Water Tbl. 7 - NPGW - Table 7 - Non-Potable Ground Water Soil Std

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *

Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

M.Duci

Final Report

C.O.C.: G92125 REPORT No. B19-38094

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada

Attention: Kamin Paul

DATE RECEIVED: 25-Nov-19

DATE REPORTED: 02-Dec-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001

Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

	Client I.D. Sample I.D. Date Collected		MW19-4 B19-38094-1 25-Nov-19		O. Re Tbl. 3 - NPGW	eg. 153 Tbl. 7 - NPGW
Parameter	Units	R.L.				
PHC F1 (C6-C10)	μg/L	50	< 50		750	420
PHC F2 (>C10-C16)	μg/L	50	< 50		150	150
PHC F3 (>C16-C34)	μg/L	400	< 400		500	500
PHC F4 (>C34-C50)	μg/L	400	< 400		500	500

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 3 - NPGW - Table 3 - Non-Potable Ground Water Tbl. 7 - NPGW - Table 7 - Non-Potable Ground Water Soil Std

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *

Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

M. Duci

Final Report

REPORT No. B19-38094 C.O.C.: G92125

Report To:

XCG Consulting Limited

4 Cataragui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada

Attention: Kamin Paul

DATE RECEIVED: 25-Nov-19

DATE REPORTED: 02-Dec-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001

Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

Summary of Exceedances

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 3 - NPGW - Table 3 - Non-Potable Ground Water Tbl. 7 - NPGW - Table 7 - Non-Potable Ground Water Soil Std

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *

Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Final Report

C.O.C.: G92137 **REPORT No. B19-39978**

Report To:

XCG Consulting Limited

4 Cataragui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada

Attention: Kamin Paul

DATE RECEIVED: 11-Dec-19

DATE REPORTED: 17-Dec-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001

Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method
PHC(F2-F4)	1	Kingston	KPR	13-Dec-19	C-PHC-W-001 (k)	MOE E3421
PHC(F1)	1	Richmond Hill	JE	13-Dec-19	C-VPHW-01 (rh)	MOE E3421

μg/g = micrograms per gram (parts per million) and is equal to mg/Kg

F1 C6-C10 hydrocarbons in µg/g, (F1-btex if requested)

F2 C10-C16 hydrocarbons in µg/g, (F2-napth if requested) F3 C16-C34 hydrocarbons in µg/g, (F3-pah if requested)

F4 C34-C50 hydrocarbons in µg/g

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

Any deviations from the method are noted and reported for any particular sample.

nC6 and nC10 response factor is within 30% of response factor for toluene:

nC10,nC16 and nC34 response factors within 10% of each other:

C50 response factors within 70% of nC10+nC16+nC34 average:

Linearity is within 15%:

All results expressed on a dry weight basis.

Unless otherwise noted all chromatograms returned to baseline by the retention

time of nC50.

Unless otherwise noted all extraction, analysis, QC requirements and limits for holding time were met. If analyzed for F4 and F4G they are not to be summed but the greater of the two numbers are to be used in application to the CWS PHC

QC will be made available upon request.

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 3 - NPGW - Table 3 - Non-Potable Ground Water Tbl. 7 - NPGW - Table 7 - Non-Potable Ground Water Soil Std

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Michelle Dubien

Final Report

C.O.C.: G92137 REPORT No. B19-39978

Report To:

XCG Consulting Limited

4 Cataraqui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada

Attention: Kamin Paul

DATE RECEIVED: 11-Dec-19

DATE REPORTED: 17-Dec-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001

Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

	Client I.D. Sample I.D. Date Collected		MW04-6 B19-39978-1 11-Dec-19		O. Re Tbl. 3 - NPGW	g. 153 Tbl. 7 - NPGW
Parameter	Units	R.L.				
PHC F1 (C6-C10)	μg/L	50	< 50		750	420
PHC F2 (>C10-C16)	μg/L	50	< 50		150	150
PHC F3 (>C16-C34)	μg/L	400	< 400		500	500
PHC F4 (>C34-C50)	μg/L	400	< 400		500	500

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 3 - NPGW - Table 3 - Non-Potable Ground Water Tbl. 7 - NPGW - Table 7 - Non-Potable Ground Water Soil Std

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *

Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

M. Duci

Final Report

REPORT No. B19-39978 C.O.C.: G92137

Report To:

XCG Consulting Limited

4 Cataragui St, Suite 100, Woolen Mill, East Wing

Kingston ON K7K 1Z7 Canada

Attention: Kamin Paul

DATE RECEIVED: 11-Dec-19

DATE REPORTED: 17-Dec-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

285 Dalton Ave

Kingston Ontario K7K 6Z1

Tel: 613-544-2001

Fax: 613-544-2770

JOB/PROJECT NO.: 1-898-25-03

P.O. NUMBER:

WATERWORKS NO.

Summary of Exceedances

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 3 - NPGW - Table 3 - Non-Potable Ground Water Tbl. 7 - NPGW - Table 7 - Non-Potable Ground Water Soil Std

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *

Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

APPENDICES

APPENDIX D COMMUNICATION RECORDS

From: Crossley, Frank (MOECC) [mailto:Frank.Crossley@ontario.ca]

Sent: April-01-15 5:36 PM

To: Kevin Shipley; Benesch, Katrina (MOECC)

Cc: Taylor, Peter (MOECC); Faaren, Greg (MOECC); Ash, Rosemary (MOECC); Stephenson, Kyle (MOECC) Subject:

RE: Naturally elevated barium in the Kingston area

Hi Kevin

Barium in soils is naturally elevated in the Kingston area. This is based on numerous soil sample results from the Kingston area.

The Table 2 and Table 3 cleanup standards from the 'Soils, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA' (MOE, 2011) for barium is 390 ug/g (R/P/I). Typically in the Kingston area the barium concentrations range naturally up to 550 ug/g.

Thanks

frank

From: Kevin Shipley [mailto:kevin.shipley@xcg.com]

Sent: March 23, 2015 11:21 AM To: Benesch, Katrina (MOECC)

Subject: Naturally elevated barium in the Kingston area

Katrina,

This is to follow up on the telephone conversation you and I had on March 11, 2015. During that conversation, you said that Rosemary Ash of the Brownfields Filing and Review group in Toronto said it would be possible to file a RSC for a site with a barium concentration exceeding the applicable MOECC site condition standard, provided that multiple lines of evidence are presented in the Phase Two Conceptual Site Model making it clear that the barium exceedance is due to naturally occurring barium in the soil.

You mentioned during our call that Frank Crossley is willing to write a memo indicating that it is his opinion that barium is present at elevated concentrations in certain soils in the Kingston area. Inclusion of such a memo in my RSC submission would be very helpful so I would request that you ask Frank to proceed with preparing the memo. Please let me know what his timeline is for completing the memo.

The location of the property with the barium exceedance is as follows: 493-497 Princess Street, 19-23 Chatham Street, and 2 and 10 Creighton Street, Kingston, Ontario. A single barium exceedance was found on this property although a number of other barium concentrations closely approaching the MOECC Table 3 standard were found (e.g., 315, 334 and 376 ug/g). The barium exceedance had a concentration of 451 ug/g compared to the applicable Table 3 standard for barium of 390 ug/g. The description of the soil type for the sample with the elevated barium concentration was "dense medium brown clay."

I was wondering if you could also ask Frank about other metals that he believes are naturally occurring in soils in the Kingston area. Possible examples include beryllium and vanadium. If he were to include discussions on several such metals in his memo, it is possible that the memo could be useful to assist in filing RSCs for other sites in the future. However, I would not want this scope expansion to extend Frank's estimated time for preparing the memo, so if it's quicker just to focus on barium, that's fine with me.

Kevin

Kevin Shipley, M.A.Sc., P.Eng., EP(CEA), EP, QPRA Partner

XCG Consultants Ltd. Environmental Engineers & Scientists
4 Cataraqui Street, Woolen Mill, East Wing, Suite 100, Kingston, Ontario, Canada K7K 1Z7

www.xcg.com | T 613 542 5888 x7104 | D 613

417 7104 | F 613 542 0844 | C 613 331 5888

Please consider the environment before printing this email.

This message is intended only for the addressee. It may contain privileged or confidential information. Any unauthorized disclosure is strictly prohibited. If you have received this message in error, please notify us immediately so that we may correct our internal records. Please then delete the original message. Thank you.